538 lines
15 KiB
Python
538 lines
15 KiB
Python
# This file is part of h5py, a Python interface to the HDF5 library.
|
|
#
|
|
# http://www.h5py.org
|
|
#
|
|
# Copyright 2008-2013 Andrew Collette and contributors
|
|
#
|
|
# License: Standard 3-clause BSD; see "license.txt" for full license terms
|
|
# and contributor agreement.
|
|
|
|
"""
|
|
Implements operations common to all high-level objects (File, etc.).
|
|
"""
|
|
|
|
from collections.abc import (
|
|
Mapping, MutableMapping, KeysView, ValuesView, ItemsView
|
|
)
|
|
import os
|
|
import posixpath
|
|
|
|
import numpy as np
|
|
|
|
# The high-level interface is serialized; every public API function & method
|
|
# is wrapped in a lock. We reuse the low-level lock because (1) it's fast,
|
|
# and (2) it eliminates the possibility of deadlocks due to out-of-order
|
|
# lock acquisition.
|
|
from .._objects import phil, with_phil
|
|
from .. import h5d, h5i, h5r, h5p, h5f, h5t, h5s
|
|
from .compat import fspath, filename_encode
|
|
|
|
|
|
def is_hdf5(fname):
|
|
""" Determine if a file is valid HDF5 (False if it doesn't exist). """
|
|
with phil:
|
|
fname = os.path.abspath(fspath(fname))
|
|
|
|
if os.path.isfile(fname):
|
|
return h5f.is_hdf5(filename_encode(fname))
|
|
return False
|
|
|
|
|
|
def find_item_type(data):
|
|
"""Find the item type of a simple object or collection of objects.
|
|
|
|
E.g. [[['a']]] -> str
|
|
|
|
The focus is on collections where all items have the same type; we'll return
|
|
None if that's not the case.
|
|
|
|
The aim is to treat numpy arrays of Python objects like normal Python
|
|
collections, while treating arrays with specific dtypes differently.
|
|
We're also only interested in array-like collections - lists and tuples,
|
|
possibly nested - not things like sets or dicts.
|
|
"""
|
|
if isinstance(data, np.ndarray):
|
|
if (
|
|
data.dtype.kind == 'O'
|
|
and not h5t.check_string_dtype(data.dtype)
|
|
and not h5t.check_vlen_dtype(data.dtype)
|
|
):
|
|
item_types = {type(e) for e in data.flat}
|
|
else:
|
|
return None
|
|
elif isinstance(data, (list, tuple)):
|
|
item_types = {find_item_type(e) for e in data}
|
|
else:
|
|
return type(data)
|
|
|
|
if len(item_types) != 1:
|
|
return None
|
|
return item_types.pop()
|
|
|
|
|
|
def guess_dtype(data):
|
|
""" Attempt to guess an appropriate dtype for the object, returning None
|
|
if nothing is appropriate (or if it should be left up the the array
|
|
constructor to figure out)
|
|
"""
|
|
with phil:
|
|
if isinstance(data, h5r.RegionReference):
|
|
return h5t.regionref_dtype
|
|
if isinstance(data, h5r.Reference):
|
|
return h5t.ref_dtype
|
|
|
|
item_type = find_item_type(data)
|
|
|
|
if item_type is bytes:
|
|
return h5t.string_dtype(encoding='ascii')
|
|
if item_type is str:
|
|
return h5t.string_dtype()
|
|
|
|
return None
|
|
|
|
|
|
def is_float16_dtype(dt):
|
|
if dt is None:
|
|
return False
|
|
|
|
dt = np.dtype(dt) # normalize strings -> np.dtype objects
|
|
return dt.kind == 'f' and dt.itemsize == 2
|
|
|
|
|
|
def array_for_new_object(data, specified_dtype=None):
|
|
"""Prepare an array from data used to create a new dataset or attribute"""
|
|
|
|
# We mostly let HDF5 convert data as necessary when it's written.
|
|
# But if we are going to a float16 datatype, pre-convert in python
|
|
# to workaround a bug in the conversion.
|
|
# https://github.com/h5py/h5py/issues/819
|
|
if is_float16_dtype(specified_dtype):
|
|
as_dtype = specified_dtype
|
|
elif not isinstance(data, np.ndarray) and (specified_dtype is not None):
|
|
# If we need to convert e.g. a list to an array, don't leave numpy
|
|
# to guess a dtype we already know.
|
|
as_dtype = specified_dtype
|
|
else:
|
|
as_dtype = guess_dtype(data)
|
|
|
|
data = np.asarray(data, order="C", dtype=as_dtype)
|
|
|
|
# In most cases, this does nothing. But if data was already an array,
|
|
# and as_dtype is a tagged h5py dtype (e.g. for an object array of strings),
|
|
# asarray() doesn't replace its dtype object. This gives it the tagged dtype:
|
|
if as_dtype is not None:
|
|
data = data.view(dtype=as_dtype)
|
|
|
|
return data
|
|
|
|
|
|
def default_lapl():
|
|
""" Default link access property list """
|
|
lapl = h5p.create(h5p.LINK_ACCESS)
|
|
fapl = h5p.create(h5p.FILE_ACCESS)
|
|
fapl.set_fclose_degree(h5f.CLOSE_STRONG)
|
|
lapl.set_elink_fapl(fapl)
|
|
return lapl
|
|
|
|
|
|
def default_lcpl():
|
|
""" Default link creation property list """
|
|
lcpl = h5p.create(h5p.LINK_CREATE)
|
|
lcpl.set_create_intermediate_group(True)
|
|
return lcpl
|
|
|
|
dlapl = default_lapl()
|
|
dlcpl = default_lcpl()
|
|
|
|
|
|
def is_empty_dataspace(obj):
|
|
""" Check if an object's dataspace is empty """
|
|
if obj.get_space().get_simple_extent_type() == h5s.NULL:
|
|
return True
|
|
return False
|
|
|
|
|
|
class CommonStateObject:
|
|
|
|
"""
|
|
Mixin class that allows sharing information between objects which
|
|
reside in the same HDF5 file. Requires that the host class have
|
|
a ".id" attribute which returns a low-level ObjectID subclass.
|
|
|
|
Also implements Unicode operations.
|
|
"""
|
|
|
|
@property
|
|
def _lapl(self):
|
|
""" Fetch the link access property list appropriate for this object
|
|
"""
|
|
return dlapl
|
|
|
|
@property
|
|
def _lcpl(self):
|
|
""" Fetch the link creation property list appropriate for this object
|
|
"""
|
|
return dlcpl
|
|
|
|
def _e(self, name, lcpl=None):
|
|
""" Encode a name according to the current file settings.
|
|
|
|
Returns name, or 2-tuple (name, lcpl) if lcpl is True
|
|
|
|
- Binary strings are always passed as-is, h5t.CSET_ASCII
|
|
- Unicode strings are encoded utf8, h5t.CSET_UTF8
|
|
|
|
If name is None, returns either None or (None, None) appropriately.
|
|
"""
|
|
def get_lcpl(coding):
|
|
""" Create an appropriate link creation property list """
|
|
lcpl = self._lcpl.copy()
|
|
lcpl.set_char_encoding(coding)
|
|
return lcpl
|
|
|
|
if name is None:
|
|
return (None, None) if lcpl else None
|
|
|
|
if isinstance(name, bytes):
|
|
coding = h5t.CSET_ASCII
|
|
elif isinstance(name, str):
|
|
try:
|
|
name = name.encode('ascii')
|
|
coding = h5t.CSET_ASCII
|
|
except UnicodeEncodeError:
|
|
name = name.encode('utf8')
|
|
coding = h5t.CSET_UTF8
|
|
else:
|
|
raise TypeError(f"A name should be string or bytes, not {type(name)}")
|
|
|
|
if lcpl:
|
|
return name, get_lcpl(coding)
|
|
return name
|
|
|
|
def _d(self, name):
|
|
""" Decode a name according to the current file settings.
|
|
|
|
- Try to decode utf8
|
|
- Failing that, return the byte string
|
|
|
|
If name is None, returns None.
|
|
"""
|
|
if name is None:
|
|
return None
|
|
|
|
try:
|
|
return name.decode('utf8')
|
|
except UnicodeDecodeError:
|
|
pass
|
|
return name
|
|
|
|
|
|
class _RegionProxy:
|
|
|
|
"""
|
|
Proxy object which handles region references.
|
|
|
|
To create a new region reference (datasets only), use slicing syntax:
|
|
|
|
>>> newref = obj.regionref[0:10:2]
|
|
|
|
To determine the target dataset shape from an existing reference:
|
|
|
|
>>> shape = obj.regionref.shape(existingref)
|
|
|
|
where <obj> may be any object in the file. To determine the shape of
|
|
the selection in use on the target dataset:
|
|
|
|
>>> selection_shape = obj.regionref.selection(existingref)
|
|
"""
|
|
|
|
def __init__(self, obj):
|
|
self.obj = obj
|
|
self.id = obj.id
|
|
|
|
def __getitem__(self, args):
|
|
if not isinstance(self.id, h5d.DatasetID):
|
|
raise TypeError("Region references can only be made to datasets")
|
|
from . import selections
|
|
with phil:
|
|
selection = selections.select(self.id.shape, args, dataset=self.obj)
|
|
return h5r.create(self.id, b'.', h5r.DATASET_REGION, selection.id)
|
|
|
|
def shape(self, ref):
|
|
""" Get the shape of the target dataspace referred to by *ref*. """
|
|
with phil:
|
|
sid = h5r.get_region(ref, self.id)
|
|
return sid.shape
|
|
|
|
def selection(self, ref):
|
|
""" Get the shape of the target dataspace selection referred to by *ref*
|
|
"""
|
|
from . import selections
|
|
with phil:
|
|
sid = h5r.get_region(ref, self.id)
|
|
return selections.guess_shape(sid)
|
|
|
|
|
|
class HLObject(CommonStateObject):
|
|
|
|
"""
|
|
Base class for high-level interface objects.
|
|
"""
|
|
|
|
@property
|
|
def file(self):
|
|
""" Return a File instance associated with this object """
|
|
from . import files
|
|
with phil:
|
|
return files.File(self.id)
|
|
|
|
@property
|
|
@with_phil
|
|
def name(self):
|
|
""" Return the full name of this object. None if anonymous. """
|
|
return self._d(h5i.get_name(self.id))
|
|
|
|
@property
|
|
@with_phil
|
|
def parent(self):
|
|
"""Return the parent group of this object.
|
|
|
|
This is always equivalent to obj.file[posixpath.dirname(obj.name)].
|
|
ValueError if this object is anonymous.
|
|
"""
|
|
if self.name is None:
|
|
raise ValueError("Parent of an anonymous object is undefined")
|
|
return self.file[posixpath.dirname(self.name)]
|
|
|
|
@property
|
|
@with_phil
|
|
def id(self):
|
|
""" Low-level identifier appropriate for this object """
|
|
return self._id
|
|
|
|
@property
|
|
@with_phil
|
|
def ref(self):
|
|
""" An (opaque) HDF5 reference to this object """
|
|
return h5r.create(self.id, b'.', h5r.OBJECT)
|
|
|
|
@property
|
|
@with_phil
|
|
def regionref(self):
|
|
"""Create a region reference (Datasets only).
|
|
|
|
The syntax is regionref[<slices>]. For example, dset.regionref[...]
|
|
creates a region reference in which the whole dataset is selected.
|
|
|
|
Can also be used to determine the shape of the referenced dataset
|
|
(via .shape property), or the shape of the selection (via the
|
|
.selection property).
|
|
"""
|
|
return _RegionProxy(self)
|
|
|
|
@property
|
|
def attrs(self):
|
|
""" Attributes attached to this object """
|
|
from . import attrs
|
|
with phil:
|
|
return attrs.AttributeManager(self)
|
|
|
|
@with_phil
|
|
def __init__(self, oid):
|
|
""" Setup this object, given its low-level identifier """
|
|
self._id = oid
|
|
|
|
@with_phil
|
|
def __hash__(self):
|
|
return hash(self.id)
|
|
|
|
@with_phil
|
|
def __eq__(self, other):
|
|
if hasattr(other, 'id'):
|
|
return self.id == other.id
|
|
return NotImplemented
|
|
|
|
def __bool__(self):
|
|
with phil:
|
|
return bool(self.id)
|
|
__nonzero__ = __bool__
|
|
|
|
def __getnewargs__(self):
|
|
"""Disable pickle.
|
|
|
|
Handles for HDF5 objects can't be reliably deserialised, because the
|
|
recipient may not have access to the same files. So we do this to
|
|
fail early.
|
|
|
|
If you really want to pickle h5py objects and can live with some
|
|
limitations, look at the h5pickle project on PyPI.
|
|
"""
|
|
raise TypeError("h5py objects cannot be pickled")
|
|
|
|
def __getstate__(self):
|
|
# Pickle protocols 0 and 1 use this instead of __getnewargs__
|
|
raise TypeError("h5py objects cannot be pickled")
|
|
|
|
# --- Dictionary-style interface ----------------------------------------------
|
|
|
|
# To implement the dictionary-style interface from groups and attributes,
|
|
# we inherit from the appropriate abstract base classes in collections.
|
|
#
|
|
# All locking is taken care of by the subclasses.
|
|
# We have to override ValuesView and ItemsView here because Group and
|
|
# AttributeManager can only test for key names.
|
|
|
|
|
|
class KeysViewHDF5(KeysView):
|
|
def __str__(self):
|
|
return "<KeysViewHDF5 {}>".format(list(self))
|
|
|
|
def __reversed__(self):
|
|
yield from reversed(self._mapping)
|
|
|
|
__repr__ = __str__
|
|
|
|
class ValuesViewHDF5(ValuesView):
|
|
|
|
"""
|
|
Wraps e.g. a Group or AttributeManager to provide a value view.
|
|
|
|
Note that __contains__ will have poor performance as it has
|
|
to scan all the links or attributes.
|
|
"""
|
|
|
|
def __contains__(self, value):
|
|
with phil:
|
|
for key in self._mapping:
|
|
if value == self._mapping.get(key):
|
|
return True
|
|
return False
|
|
|
|
def __iter__(self):
|
|
with phil:
|
|
for key in self._mapping:
|
|
yield self._mapping.get(key)
|
|
|
|
def __reversed__(self):
|
|
with phil:
|
|
for key in reversed(self._mapping):
|
|
yield self._mapping.get(key)
|
|
|
|
|
|
class ItemsViewHDF5(ItemsView):
|
|
|
|
"""
|
|
Wraps e.g. a Group or AttributeManager to provide an items view.
|
|
"""
|
|
|
|
def __contains__(self, item):
|
|
with phil:
|
|
key, val = item
|
|
if key in self._mapping:
|
|
return val == self._mapping.get(key)
|
|
return False
|
|
|
|
def __iter__(self):
|
|
with phil:
|
|
for key in self._mapping:
|
|
yield (key, self._mapping.get(key))
|
|
|
|
def __reversed__(self):
|
|
with phil:
|
|
for key in reversed(self._mapping):
|
|
yield (key, self._mapping.get(key))
|
|
|
|
|
|
class MappingHDF5(Mapping):
|
|
|
|
"""
|
|
Wraps a Group, AttributeManager or DimensionManager object to provide
|
|
an immutable mapping interface.
|
|
|
|
We don't inherit directly from MutableMapping because certain
|
|
subclasses, for example DimensionManager, are read-only.
|
|
"""
|
|
def keys(self):
|
|
""" Get a view object on member names """
|
|
return KeysViewHDF5(self)
|
|
|
|
def values(self):
|
|
""" Get a view object on member objects """
|
|
return ValuesViewHDF5(self)
|
|
|
|
def items(self):
|
|
""" Get a view object on member items """
|
|
return ItemsViewHDF5(self)
|
|
|
|
def _ipython_key_completions_(self):
|
|
""" Custom tab completions for __getitem__ in IPython >=5.0. """
|
|
return sorted(self.keys())
|
|
|
|
|
|
class MutableMappingHDF5(MappingHDF5, MutableMapping):
|
|
|
|
"""
|
|
Wraps a Group or AttributeManager object to provide a mutable
|
|
mapping interface, in contrast to the read-only mapping of
|
|
MappingHDF5.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class Empty:
|
|
|
|
"""
|
|
Proxy object to represent empty/null dataspaces (a.k.a H5S_NULL).
|
|
|
|
This can have an associated dtype, but has no shape or data. This is not
|
|
the same as an array with shape (0,).
|
|
"""
|
|
shape = None
|
|
size = None
|
|
|
|
def __init__(self, dtype):
|
|
self.dtype = np.dtype(dtype)
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, Empty) and self.dtype == other.dtype:
|
|
return True
|
|
return False
|
|
|
|
def __repr__(self):
|
|
return "Empty(dtype={0!r})".format(self.dtype)
|
|
|
|
|
|
def product(nums):
|
|
"""Calculate a numeric product
|
|
|
|
For small amounts of data (e.g. shape tuples), this simple code is much
|
|
faster than calling numpy.prod().
|
|
"""
|
|
prod = 1
|
|
for n in nums:
|
|
prod *= n
|
|
return prod
|
|
|
|
|
|
# Simple variant of cached_property:
|
|
# Unlike functools, this has no locking, so we don't have to worry about
|
|
# deadlocks with phil (see issue gh-2064). Unlike cached-property on PyPI, it
|
|
# doesn't try to import asyncio (which can be ~100 extra modules).
|
|
# Many projects seem to have similar variants of this, often without attribution,
|
|
# but to be cautious, this code comes from cached-property (Copyright (c) 2015,
|
|
# Daniel Greenfeld, BSD license), where it is attributed to bottle (Copyright
|
|
# (c) 2009-2022, Marcel Hellkamp, MIT license).
|
|
|
|
class cached_property:
|
|
def __init__(self, func):
|
|
self.__doc__ = getattr(func, "__doc__")
|
|
self.func = func
|
|
|
|
def __get__(self, obj, cls):
|
|
if obj is None:
|
|
return self
|
|
|
|
value = obj.__dict__[self.func.__name__] = self.func(obj)
|
|
return value
|