554 lines
16 KiB
Python
554 lines
16 KiB
Python
"""
|
|
Low-dependency indexing utilities.
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
from pandas._libs import lib
|
|
|
|
from pandas.core.dtypes.common import (
|
|
is_array_like,
|
|
is_bool_dtype,
|
|
is_integer,
|
|
is_integer_dtype,
|
|
is_list_like,
|
|
)
|
|
from pandas.core.dtypes.dtypes import ExtensionDtype
|
|
from pandas.core.dtypes.generic import (
|
|
ABCIndex,
|
|
ABCSeries,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from pandas._typing import AnyArrayLike
|
|
|
|
from pandas.core.frame import DataFrame
|
|
from pandas.core.indexes.base import Index
|
|
|
|
# -----------------------------------------------------------
|
|
# Indexer Identification
|
|
|
|
|
|
def is_valid_positional_slice(slc: slice) -> bool:
|
|
"""
|
|
Check if a slice object can be interpreted as a positional indexer.
|
|
|
|
Parameters
|
|
----------
|
|
slc : slice
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
|
|
Notes
|
|
-----
|
|
A valid positional slice may also be interpreted as a label-based slice
|
|
depending on the index being sliced.
|
|
"""
|
|
return (
|
|
lib.is_int_or_none(slc.start)
|
|
and lib.is_int_or_none(slc.stop)
|
|
and lib.is_int_or_none(slc.step)
|
|
)
|
|
|
|
|
|
def is_list_like_indexer(key) -> bool:
|
|
"""
|
|
Check if we have a list-like indexer that is *not* a NamedTuple.
|
|
|
|
Parameters
|
|
----------
|
|
key : object
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
"""
|
|
# allow a list_like, but exclude NamedTuples which can be indexers
|
|
return is_list_like(key) and not (isinstance(key, tuple) and type(key) is not tuple)
|
|
|
|
|
|
def is_scalar_indexer(indexer, ndim: int) -> bool:
|
|
"""
|
|
Return True if we are all scalar indexers.
|
|
|
|
Parameters
|
|
----------
|
|
indexer : object
|
|
ndim : int
|
|
Number of dimensions in the object being indexed.
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
"""
|
|
if ndim == 1 and is_integer(indexer):
|
|
# GH37748: allow indexer to be an integer for Series
|
|
return True
|
|
if isinstance(indexer, tuple) and len(indexer) == ndim:
|
|
return all(is_integer(x) for x in indexer)
|
|
return False
|
|
|
|
|
|
def is_empty_indexer(indexer) -> bool:
|
|
"""
|
|
Check if we have an empty indexer.
|
|
|
|
Parameters
|
|
----------
|
|
indexer : object
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
"""
|
|
if is_list_like(indexer) and not len(indexer):
|
|
return True
|
|
if not isinstance(indexer, tuple):
|
|
indexer = (indexer,)
|
|
return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer)
|
|
|
|
|
|
# -----------------------------------------------------------
|
|
# Indexer Validation
|
|
|
|
|
|
def check_setitem_lengths(indexer, value, values) -> bool:
|
|
"""
|
|
Validate that value and indexer are the same length.
|
|
|
|
An special-case is allowed for when the indexer is a boolean array
|
|
and the number of true values equals the length of ``value``. In
|
|
this case, no exception is raised.
|
|
|
|
Parameters
|
|
----------
|
|
indexer : sequence
|
|
Key for the setitem.
|
|
value : array-like
|
|
Value for the setitem.
|
|
values : array-like
|
|
Values being set into.
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
Whether this is an empty listlike setting which is a no-op.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
When the indexer is an ndarray or list and the lengths don't match.
|
|
"""
|
|
no_op = False
|
|
|
|
if isinstance(indexer, (np.ndarray, list)):
|
|
# We can ignore other listlikes because they are either
|
|
# a) not necessarily 1-D indexers, e.g. tuple
|
|
# b) boolean indexers e.g. BoolArray
|
|
if is_list_like(value):
|
|
if len(indexer) != len(value) and values.ndim == 1:
|
|
# boolean with truth values == len of the value is ok too
|
|
if isinstance(indexer, list):
|
|
indexer = np.array(indexer)
|
|
if not (
|
|
isinstance(indexer, np.ndarray)
|
|
and indexer.dtype == np.bool_
|
|
and indexer.sum() == len(value)
|
|
):
|
|
raise ValueError(
|
|
"cannot set using a list-like indexer "
|
|
"with a different length than the value"
|
|
)
|
|
if not len(indexer):
|
|
no_op = True
|
|
|
|
elif isinstance(indexer, slice):
|
|
if is_list_like(value):
|
|
if len(value) != length_of_indexer(indexer, values) and values.ndim == 1:
|
|
# In case of two dimensional value is used row-wise and broadcasted
|
|
raise ValueError(
|
|
"cannot set using a slice indexer with a "
|
|
"different length than the value"
|
|
)
|
|
if not len(value):
|
|
no_op = True
|
|
|
|
return no_op
|
|
|
|
|
|
def validate_indices(indices: np.ndarray, n: int) -> None:
|
|
"""
|
|
Perform bounds-checking for an indexer.
|
|
|
|
-1 is allowed for indicating missing values.
|
|
|
|
Parameters
|
|
----------
|
|
indices : ndarray
|
|
n : int
|
|
Length of the array being indexed.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
|
|
Examples
|
|
--------
|
|
>>> validate_indices(np.array([1, 2]), 3) # OK
|
|
|
|
>>> validate_indices(np.array([1, -2]), 3)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: negative dimensions are not allowed
|
|
|
|
>>> validate_indices(np.array([1, 2, 3]), 3)
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: indices are out-of-bounds
|
|
|
|
>>> validate_indices(np.array([-1, -1]), 0) # OK
|
|
|
|
>>> validate_indices(np.array([0, 1]), 0)
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: indices are out-of-bounds
|
|
"""
|
|
if len(indices):
|
|
min_idx = indices.min()
|
|
if min_idx < -1:
|
|
msg = f"'indices' contains values less than allowed ({min_idx} < -1)"
|
|
raise ValueError(msg)
|
|
|
|
max_idx = indices.max()
|
|
if max_idx >= n:
|
|
raise IndexError("indices are out-of-bounds")
|
|
|
|
|
|
# -----------------------------------------------------------
|
|
# Indexer Conversion
|
|
|
|
|
|
def maybe_convert_indices(indices, n: int, verify: bool = True) -> np.ndarray:
|
|
"""
|
|
Attempt to convert indices into valid, positive indices.
|
|
|
|
If we have negative indices, translate to positive here.
|
|
If we have indices that are out-of-bounds, raise an IndexError.
|
|
|
|
Parameters
|
|
----------
|
|
indices : array-like
|
|
Array of indices that we are to convert.
|
|
n : int
|
|
Number of elements in the array that we are indexing.
|
|
verify : bool, default True
|
|
Check that all entries are between 0 and n - 1, inclusive.
|
|
|
|
Returns
|
|
-------
|
|
array-like
|
|
An array-like of positive indices that correspond to the ones
|
|
that were passed in initially to this function.
|
|
|
|
Raises
|
|
------
|
|
IndexError
|
|
One of the converted indices either exceeded the number of,
|
|
elements (specified by `n`), or was still negative.
|
|
"""
|
|
if isinstance(indices, list):
|
|
indices = np.array(indices)
|
|
if len(indices) == 0:
|
|
# If `indices` is empty, np.array will return a float,
|
|
# and will cause indexing errors.
|
|
return np.empty(0, dtype=np.intp)
|
|
|
|
mask = indices < 0
|
|
if mask.any():
|
|
indices = indices.copy()
|
|
indices[mask] += n
|
|
|
|
if verify:
|
|
mask = (indices >= n) | (indices < 0)
|
|
if mask.any():
|
|
raise IndexError("indices are out-of-bounds")
|
|
return indices
|
|
|
|
|
|
# -----------------------------------------------------------
|
|
# Unsorted
|
|
|
|
|
|
def length_of_indexer(indexer, target=None) -> int:
|
|
"""
|
|
Return the expected length of target[indexer]
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
"""
|
|
if target is not None and isinstance(indexer, slice):
|
|
target_len = len(target)
|
|
start = indexer.start
|
|
stop = indexer.stop
|
|
step = indexer.step
|
|
if start is None:
|
|
start = 0
|
|
elif start < 0:
|
|
start += target_len
|
|
if stop is None or stop > target_len:
|
|
stop = target_len
|
|
elif stop < 0:
|
|
stop += target_len
|
|
if step is None:
|
|
step = 1
|
|
elif step < 0:
|
|
start, stop = stop + 1, start + 1
|
|
step = -step
|
|
return (stop - start + step - 1) // step
|
|
elif isinstance(indexer, (ABCSeries, ABCIndex, np.ndarray, list)):
|
|
if isinstance(indexer, list):
|
|
indexer = np.array(indexer)
|
|
|
|
if indexer.dtype == bool:
|
|
# GH#25774
|
|
return indexer.sum()
|
|
return len(indexer)
|
|
elif isinstance(indexer, range):
|
|
return (indexer.stop - indexer.start) // indexer.step
|
|
elif not is_list_like_indexer(indexer):
|
|
return 1
|
|
raise AssertionError("cannot find the length of the indexer")
|
|
|
|
|
|
def disallow_ndim_indexing(result) -> None:
|
|
"""
|
|
Helper function to disallow multi-dimensional indexing on 1D Series/Index.
|
|
|
|
GH#27125 indexer like idx[:, None] expands dim, but we cannot do that
|
|
and keep an index, so we used to return ndarray, which was deprecated
|
|
in GH#30588.
|
|
"""
|
|
if np.ndim(result) > 1:
|
|
raise ValueError(
|
|
"Multi-dimensional indexing (e.g. `obj[:, None]`) is no longer "
|
|
"supported. Convert to a numpy array before indexing instead."
|
|
)
|
|
|
|
|
|
def unpack_1tuple(tup):
|
|
"""
|
|
If we have a length-1 tuple/list that contains a slice, unpack to just
|
|
the slice.
|
|
|
|
Notes
|
|
-----
|
|
The list case is deprecated.
|
|
"""
|
|
if len(tup) == 1 and isinstance(tup[0], slice):
|
|
# if we don't have a MultiIndex, we may still be able to handle
|
|
# a 1-tuple. see test_1tuple_without_multiindex
|
|
|
|
if isinstance(tup, list):
|
|
# GH#31299
|
|
raise ValueError(
|
|
"Indexing with a single-item list containing a "
|
|
"slice is not allowed. Pass a tuple instead.",
|
|
)
|
|
|
|
return tup[0]
|
|
return tup
|
|
|
|
|
|
def check_key_length(columns: Index, key, value: DataFrame) -> None:
|
|
"""
|
|
Checks if a key used as indexer has the same length as the columns it is
|
|
associated with.
|
|
|
|
Parameters
|
|
----------
|
|
columns : Index The columns of the DataFrame to index.
|
|
key : A list-like of keys to index with.
|
|
value : DataFrame The value to set for the keys.
|
|
|
|
Raises
|
|
------
|
|
ValueError: If the length of key is not equal to the number of columns in value
|
|
or if the number of columns referenced by key is not equal to number
|
|
of columns.
|
|
"""
|
|
if columns.is_unique:
|
|
if len(value.columns) != len(key):
|
|
raise ValueError("Columns must be same length as key")
|
|
else:
|
|
# Missing keys in columns are represented as -1
|
|
if len(columns.get_indexer_non_unique(key)[0]) != len(value.columns):
|
|
raise ValueError("Columns must be same length as key")
|
|
|
|
|
|
def unpack_tuple_and_ellipses(item: tuple):
|
|
"""
|
|
Possibly unpack arr[..., n] to arr[n]
|
|
"""
|
|
if len(item) > 1:
|
|
# Note: we are assuming this indexing is being done on a 1D arraylike
|
|
if item[0] is Ellipsis:
|
|
item = item[1:]
|
|
elif item[-1] is Ellipsis:
|
|
item = item[:-1]
|
|
|
|
if len(item) > 1:
|
|
raise IndexError("too many indices for array.")
|
|
|
|
item = item[0]
|
|
return item
|
|
|
|
|
|
# -----------------------------------------------------------
|
|
# Public indexer validation
|
|
|
|
|
|
def check_array_indexer(array: AnyArrayLike, indexer: Any) -> Any:
|
|
"""
|
|
Check if `indexer` is a valid array indexer for `array`.
|
|
|
|
For a boolean mask, `array` and `indexer` are checked to have the same
|
|
length. The dtype is validated, and if it is an integer or boolean
|
|
ExtensionArray, it is checked if there are missing values present, and
|
|
it is converted to the appropriate numpy array. Other dtypes will raise
|
|
an error.
|
|
|
|
Non-array indexers (integer, slice, Ellipsis, tuples, ..) are passed
|
|
through as is.
|
|
|
|
Parameters
|
|
----------
|
|
array : array-like
|
|
The array that is being indexed (only used for the length).
|
|
indexer : array-like or list-like
|
|
The array-like that's used to index. List-like input that is not yet
|
|
a numpy array or an ExtensionArray is converted to one. Other input
|
|
types are passed through as is.
|
|
|
|
Returns
|
|
-------
|
|
numpy.ndarray
|
|
The validated indexer as a numpy array that can be used to index.
|
|
|
|
Raises
|
|
------
|
|
IndexError
|
|
When the lengths don't match.
|
|
ValueError
|
|
When `indexer` cannot be converted to a numpy ndarray to index
|
|
(e.g. presence of missing values).
|
|
|
|
See Also
|
|
--------
|
|
api.types.is_bool_dtype : Check if `key` is of boolean dtype.
|
|
|
|
Examples
|
|
--------
|
|
When checking a boolean mask, a boolean ndarray is returned when the
|
|
arguments are all valid.
|
|
|
|
>>> mask = pd.array([True, False])
|
|
>>> arr = pd.array([1, 2])
|
|
>>> pd.api.indexers.check_array_indexer(arr, mask)
|
|
array([ True, False])
|
|
|
|
An IndexError is raised when the lengths don't match.
|
|
|
|
>>> mask = pd.array([True, False, True])
|
|
>>> pd.api.indexers.check_array_indexer(arr, mask)
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: Boolean index has wrong length: 3 instead of 2.
|
|
|
|
NA values in a boolean array are treated as False.
|
|
|
|
>>> mask = pd.array([True, pd.NA])
|
|
>>> pd.api.indexers.check_array_indexer(arr, mask)
|
|
array([ True, False])
|
|
|
|
A numpy boolean mask will get passed through (if the length is correct):
|
|
|
|
>>> mask = np.array([True, False])
|
|
>>> pd.api.indexers.check_array_indexer(arr, mask)
|
|
array([ True, False])
|
|
|
|
Similarly for integer indexers, an integer ndarray is returned when it is
|
|
a valid indexer, otherwise an error is (for integer indexers, a matching
|
|
length is not required):
|
|
|
|
>>> indexer = pd.array([0, 2], dtype="Int64")
|
|
>>> arr = pd.array([1, 2, 3])
|
|
>>> pd.api.indexers.check_array_indexer(arr, indexer)
|
|
array([0, 2])
|
|
|
|
>>> indexer = pd.array([0, pd.NA], dtype="Int64")
|
|
>>> pd.api.indexers.check_array_indexer(arr, indexer)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Cannot index with an integer indexer containing NA values
|
|
|
|
For non-integer/boolean dtypes, an appropriate error is raised:
|
|
|
|
>>> indexer = np.array([0., 2.], dtype="float64")
|
|
>>> pd.api.indexers.check_array_indexer(arr, indexer)
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: arrays used as indices must be of integer or boolean type
|
|
"""
|
|
from pandas.core.construction import array as pd_array
|
|
|
|
# whatever is not an array-like is returned as-is (possible valid array
|
|
# indexers that are not array-like: integer, slice, Ellipsis, None)
|
|
# In this context, tuples are not considered as array-like, as they have
|
|
# a specific meaning in indexing (multi-dimensional indexing)
|
|
if is_list_like(indexer):
|
|
if isinstance(indexer, tuple):
|
|
return indexer
|
|
else:
|
|
return indexer
|
|
|
|
# convert list-likes to array
|
|
if not is_array_like(indexer):
|
|
indexer = pd_array(indexer)
|
|
if len(indexer) == 0:
|
|
# empty list is converted to float array by pd.array
|
|
indexer = np.array([], dtype=np.intp)
|
|
|
|
dtype = indexer.dtype
|
|
if is_bool_dtype(dtype):
|
|
if isinstance(dtype, ExtensionDtype):
|
|
indexer = indexer.to_numpy(dtype=bool, na_value=False)
|
|
else:
|
|
indexer = np.asarray(indexer, dtype=bool)
|
|
|
|
# GH26658
|
|
if len(indexer) != len(array):
|
|
raise IndexError(
|
|
f"Boolean index has wrong length: "
|
|
f"{len(indexer)} instead of {len(array)}"
|
|
)
|
|
elif is_integer_dtype(dtype):
|
|
try:
|
|
indexer = np.asarray(indexer, dtype=np.intp)
|
|
except ValueError as err:
|
|
raise ValueError(
|
|
"Cannot index with an integer indexer containing NA values"
|
|
) from err
|
|
else:
|
|
raise IndexError("arrays used as indices must be of integer or boolean type")
|
|
|
|
return indexer
|