3RNN/Lib/site-packages/pandas/tests/indexing/multiindex/test_indexing_slow.py
2024-05-26 19:49:15 +02:00

119 lines
3.3 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
@pytest.fixture
def m():
return 5
@pytest.fixture
def n():
return 100
@pytest.fixture
def cols():
return ["jim", "joe", "jolie", "joline", "jolia"]
@pytest.fixture
def vals(n):
vals = [
np.random.default_rng(2).integers(0, 10, n),
np.random.default_rng(2).choice(list("abcdefghij"), n),
np.random.default_rng(2).choice(
pd.date_range("20141009", periods=10).tolist(), n
),
np.random.default_rng(2).choice(list("ZYXWVUTSRQ"), n),
np.random.default_rng(2).standard_normal(n),
]
vals = list(map(tuple, zip(*vals)))
return vals
@pytest.fixture
def keys(n, m, vals):
# bunch of keys for testing
keys = [
np.random.default_rng(2).integers(0, 11, m),
np.random.default_rng(2).choice(list("abcdefghijk"), m),
np.random.default_rng(2).choice(
pd.date_range("20141009", periods=11).tolist(), m
),
np.random.default_rng(2).choice(list("ZYXWVUTSRQP"), m),
]
keys = list(map(tuple, zip(*keys)))
keys += [t[:-1] for t in vals[:: n // m]]
return keys
# covers both unique index and non-unique index
@pytest.fixture
def df(vals, cols):
return DataFrame(vals, columns=cols)
@pytest.fixture
def a(df):
return pd.concat([df, df])
@pytest.fixture
def b(df, cols):
return df.drop_duplicates(subset=cols[:-1])
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
@pytest.mark.parametrize("lexsort_depth", list(range(5)))
@pytest.mark.parametrize("frame_fixture", ["a", "b"])
def test_multiindex_get_loc(request, lexsort_depth, keys, frame_fixture, cols):
# GH7724, GH2646
frame = request.getfixturevalue(frame_fixture)
if lexsort_depth == 0:
df = frame.copy(deep=False)
else:
df = frame.sort_values(by=cols[:lexsort_depth])
mi = df.set_index(cols[:-1])
assert not mi.index._lexsort_depth < lexsort_depth
for key in keys:
mask = np.ones(len(df), dtype=bool)
# test for all partials of this key
for i, k in enumerate(key):
mask &= df.iloc[:, i] == k
if not mask.any():
assert key[: i + 1] not in mi.index
continue
assert key[: i + 1] in mi.index
right = df[mask].copy(deep=False)
if i + 1 != len(key): # partial key
return_value = right.drop(cols[: i + 1], axis=1, inplace=True)
assert return_value is None
return_value = right.set_index(cols[i + 1 : -1], inplace=True)
assert return_value is None
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
else: # full key
return_value = right.set_index(cols[:-1], inplace=True)
assert return_value is None
if len(right) == 1: # single hit
right = Series(
right["jolia"].values, name=right.index[0], index=["jolia"]
)
tm.assert_series_equal(mi.loc[key[: i + 1]], right)
else: # multi hit
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)