3RNN/Lib/site-packages/scipy/sparse/_data.py
2024-05-26 19:49:15 +02:00

507 lines
17 KiB
Python

"""Base class for sparse matrice with a .data attribute
subclasses must provide a _with_data() method that
creates a new matrix with the same sparsity pattern
as self but with a different data array
"""
import numpy as np
from ._base import _spbase, _ufuncs_with_fixed_point_at_zero
from ._sputils import isscalarlike, validateaxis
__all__ = []
# TODO implement all relevant operations
# use .data.__methods__() instead of /=, *=, etc.
class _data_matrix(_spbase):
def __init__(self):
_spbase.__init__(self)
@property
def dtype(self):
return self.data.dtype
@dtype.setter
def dtype(self, newtype):
self.data.dtype = newtype
def _deduped_data(self):
if hasattr(self, 'sum_duplicates'):
self.sum_duplicates()
return self.data
def __abs__(self):
return self._with_data(abs(self._deduped_data()))
def __round__(self, ndigits=0):
return self._with_data(np.around(self._deduped_data(), decimals=ndigits))
def _real(self):
return self._with_data(self.data.real)
def _imag(self):
return self._with_data(self.data.imag)
def __neg__(self):
if self.dtype.kind == 'b':
raise NotImplementedError('negating a boolean sparse array is not '
'supported')
return self._with_data(-self.data)
def __imul__(self, other): # self *= other
if isscalarlike(other):
self.data *= other
return self
else:
return NotImplemented
def __itruediv__(self, other): # self /= other
if isscalarlike(other):
recip = 1.0 / other
self.data *= recip
return self
else:
return NotImplemented
def astype(self, dtype, casting='unsafe', copy=True):
dtype = np.dtype(dtype)
if self.dtype != dtype:
matrix = self._with_data(
self.data.astype(dtype, casting=casting, copy=True),
copy=True
)
return matrix._with_data(matrix._deduped_data(), copy=False)
elif copy:
return self.copy()
else:
return self
astype.__doc__ = _spbase.astype.__doc__
def conjugate(self, copy=True):
if np.issubdtype(self.dtype, np.complexfloating):
return self._with_data(self.data.conjugate(), copy=copy)
elif copy:
return self.copy()
else:
return self
conjugate.__doc__ = _spbase.conjugate.__doc__
def copy(self):
return self._with_data(self.data.copy(), copy=True)
copy.__doc__ = _spbase.copy.__doc__
def count_nonzero(self):
return np.count_nonzero(self._deduped_data())
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__
def power(self, n, dtype=None):
"""
This function performs element-wise power.
Parameters
----------
n : scalar
n is a non-zero scalar (nonzero avoids dense ones creation)
If zero power is desired, special case it to use `np.ones`
dtype : If dtype is not specified, the current dtype will be preserved.
Raises
------
NotImplementedError : if n is a zero scalar
If zero power is desired, special case it to use
`np.ones(A.shape, dtype=A.dtype)`
"""
if not isscalarlike(n):
raise NotImplementedError("input is not scalar")
if not n:
raise NotImplementedError(
"zero power is not supported as it would densify the matrix.\n"
"Use `np.ones(A.shape, dtype=A.dtype)` for this case."
)
data = self._deduped_data()
if dtype is not None:
data = data.astype(dtype)
return self._with_data(data ** n)
###########################
# Multiplication handlers #
###########################
def _mul_scalar(self, other):
return self._with_data(self.data * other)
# Add the numpy unary ufuncs for which func(0) = 0 to _data_matrix.
for npfunc in _ufuncs_with_fixed_point_at_zero:
name = npfunc.__name__
def _create_method(op):
def method(self):
result = op(self._deduped_data())
return self._with_data(result, copy=True)
method.__doc__ = (f"Element-wise {name}.\n\n"
f"See `numpy.{name}` for more information.")
method.__name__ = name
return method
setattr(_data_matrix, name, _create_method(npfunc))
def _find_missing_index(ind, n):
for k, a in enumerate(ind):
if k != a:
return k
k += 1
if k < n:
return k
else:
return -1
class _minmax_mixin:
"""Mixin for min and max methods.
These are not implemented for dia_matrix, hence the separate class.
"""
def _min_or_max_axis(self, axis, min_or_max):
N = self.shape[axis]
if N == 0:
raise ValueError("zero-size array to reduction operation")
M = self.shape[1 - axis]
idx_dtype = self._get_index_dtype(maxval=M)
mat = self.tocsc() if axis == 0 else self.tocsr()
mat.sum_duplicates()
major_index, value = mat._minor_reduce(min_or_max)
not_full = np.diff(mat.indptr)[major_index] < N
value[not_full] = min_or_max(value[not_full], 0)
mask = value != 0
major_index = np.compress(mask, major_index)
value = np.compress(mask, value)
if axis == 0:
return self._coo_container(
(value, (np.zeros(len(value), dtype=idx_dtype), major_index)),
dtype=self.dtype, shape=(1, M)
)
else:
return self._coo_container(
(value, (major_index, np.zeros(len(value), dtype=idx_dtype))),
dtype=self.dtype, shape=(M, 1)
)
def _min_or_max(self, axis, out, min_or_max):
if out is not None:
raise ValueError("Sparse arrays do not support an 'out' parameter.")
validateaxis(axis)
if self.ndim == 1:
if axis not in (None, 0, -1):
raise ValueError("axis out of range")
axis = None # avoid calling special axis case. no impact on 1d
if axis is None:
if 0 in self.shape:
raise ValueError("zero-size array to reduction operation")
zero = self.dtype.type(0)
if self.nnz == 0:
return zero
m = min_or_max.reduce(self._deduped_data().ravel())
if self.nnz != np.prod(self.shape):
m = min_or_max(zero, m)
return m
if axis < 0:
axis += 2
if (axis == 0) or (axis == 1):
return self._min_or_max_axis(axis, min_or_max)
else:
raise ValueError("axis out of range")
def _arg_min_or_max_axis(self, axis, argmin_or_argmax, compare):
if self.shape[axis] == 0:
raise ValueError("Cannot apply the operation along a zero-sized dimension.")
if axis < 0:
axis += 2
zero = self.dtype.type(0)
mat = self.tocsc() if axis == 0 else self.tocsr()
mat.sum_duplicates()
ret_size, line_size = mat._swap(mat.shape)
ret = np.zeros(ret_size, dtype=int)
nz_lines, = np.nonzero(np.diff(mat.indptr))
for i in nz_lines:
p, q = mat.indptr[i:i + 2]
data = mat.data[p:q]
indices = mat.indices[p:q]
extreme_index = argmin_or_argmax(data)
extreme_value = data[extreme_index]
if compare(extreme_value, zero) or q - p == line_size:
ret[i] = indices[extreme_index]
else:
zero_ind = _find_missing_index(indices, line_size)
if extreme_value == zero:
ret[i] = min(extreme_index, zero_ind)
else:
ret[i] = zero_ind
if axis == 1:
ret = ret.reshape(-1, 1)
return self._ascontainer(ret)
def _arg_min_or_max(self, axis, out, argmin_or_argmax, compare):
if out is not None:
raise ValueError("Sparse types do not support an 'out' parameter.")
validateaxis(axis)
if self.ndim == 1:
if axis not in (None, 0, -1):
raise ValueError("axis out of range")
axis = None # avoid calling special axis case. no impact on 1d
if axis is not None:
return self._arg_min_or_max_axis(axis, argmin_or_argmax, compare)
if 0 in self.shape:
raise ValueError("Cannot apply the operation to an empty matrix.")
if self.nnz == 0:
return 0
zero = self.dtype.type(0)
mat = self.tocoo()
# Convert to canonical form: no duplicates, sorted indices.
mat.sum_duplicates()
extreme_index = argmin_or_argmax(mat.data)
extreme_value = mat.data[extreme_index]
num_col = mat.shape[-1]
# If the min value is less than zero, or max is greater than zero,
# then we do not need to worry about implicit zeros.
if compare(extreme_value, zero):
# cast to Python int to avoid overflow and RuntimeError
return int(mat.row[extreme_index]) * num_col + int(mat.col[extreme_index])
# Cheap test for the rare case where we have no implicit zeros.
size = np.prod(self.shape)
if size == mat.nnz:
return int(mat.row[extreme_index]) * num_col + int(mat.col[extreme_index])
# At this stage, any implicit zero could be the min or max value.
# After sum_duplicates(), the `row` and `col` arrays are guaranteed to
# be sorted in C-order, which means the linearized indices are sorted.
linear_indices = mat.row * num_col + mat.col
first_implicit_zero_index = _find_missing_index(linear_indices, size)
if extreme_value == zero:
return min(first_implicit_zero_index, extreme_index)
return first_implicit_zero_index
def max(self, axis=None, out=None):
"""
Return the maximum of the array/matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.
Parameters
----------
axis : {-2, -1, 0, 1, None} optional
Axis along which the sum is computed. The default is to
compute the maximum over all elements, returning
a scalar (i.e., `axis` = `None`).
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.
Returns
-------
amax : coo_matrix or scalar
Maximum of `a`. If `axis` is None, the result is a scalar value.
If `axis` is given, the result is a sparse.coo_matrix of dimension
``a.ndim - 1``.
See Also
--------
min : The minimum value of a sparse array/matrix along a given axis.
numpy.matrix.max : NumPy's implementation of 'max' for matrices
"""
return self._min_or_max(axis, out, np.maximum)
def min(self, axis=None, out=None):
"""
Return the minimum of the array/matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.
Parameters
----------
axis : {-2, -1, 0, 1, None} optional
Axis along which the sum is computed. The default is to
compute the minimum over all elements, returning
a scalar (i.e., `axis` = `None`).
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
amin : coo_matrix or scalar
Minimum of `a`. If `axis` is None, the result is a scalar value.
If `axis` is given, the result is a sparse.coo_matrix of dimension
``a.ndim - 1``.
See Also
--------
max : The maximum value of a sparse array/matrix along a given axis.
numpy.matrix.min : NumPy's implementation of 'min' for matrices
"""
return self._min_or_max(axis, out, np.minimum)
def nanmax(self, axis=None, out=None):
"""
Return the maximum of the array/matrix or maximum along an axis, ignoring any
NaNs. This takes all elements into account, not just the non-zero
ones.
.. versionadded:: 1.11.0
Parameters
----------
axis : {-2, -1, 0, 1, None} optional
Axis along which the maximum is computed. The default is to
compute the maximum over all elements, returning
a scalar (i.e., `axis` = `None`).
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.
Returns
-------
amax : coo_matrix or scalar
Maximum of `a`. If `axis` is None, the result is a scalar value.
If `axis` is given, the result is a sparse.coo_matrix of dimension
``a.ndim - 1``.
See Also
--------
nanmin : The minimum value of a sparse array/matrix along a given axis,
ignoring NaNs.
max : The maximum value of a sparse array/matrix along a given axis,
propagating NaNs.
numpy.nanmax : NumPy's implementation of 'nanmax'.
"""
return self._min_or_max(axis, out, np.fmax)
def nanmin(self, axis=None, out=None):
"""
Return the minimum of the array/matrix or minimum along an axis, ignoring any
NaNs. This takes all elements into account, not just the non-zero
ones.
.. versionadded:: 1.11.0
Parameters
----------
axis : {-2, -1, 0, 1, None} optional
Axis along which the minimum is computed. The default is to
compute the minimum over all elements, returning
a scalar (i.e., `axis` = `None`).
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
amin : coo_matrix or scalar
Minimum of `a`. If `axis` is None, the result is a scalar value.
If `axis` is given, the result is a sparse.coo_matrix of dimension
``a.ndim - 1``.
See Also
--------
nanmax : The maximum value of a sparse array/matrix along a given axis,
ignoring NaNs.
min : The minimum value of a sparse array/matrix along a given axis,
propagating NaNs.
numpy.nanmin : NumPy's implementation of 'nanmin'.
"""
return self._min_or_max(axis, out, np.fmin)
def argmax(self, axis=None, out=None):
"""Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are
several maximum values, the index of the first occurrence is returned.
Parameters
----------
axis : {-2, -1, 0, 1, None}, optional
Axis along which the argmax is computed. If None (default), index
of the maximum element in the flatten data is returned.
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
ind : numpy.matrix or int
Indices of maximum elements. If matrix, its size along `axis` is 1.
"""
return self._arg_min_or_max(axis, out, np.argmax, np.greater)
def argmin(self, axis=None, out=None):
"""Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are
several minimum values, the index of the first occurrence is returned.
Parameters
----------
axis : {-2, -1, 0, 1, None}, optional
Axis along which the argmin is computed. If None (default), index
of the minimum element in the flatten data is returned.
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
ind : numpy.matrix or int
Indices of minimum elements. If matrix, its size along `axis` is 1.
"""
return self._arg_min_or_max(axis, out, np.argmin, np.less)