179 lines
4.9 KiB
Python
179 lines
4.9 KiB
Python
"""Functions to extract parts of sparse matrices
|
|
"""
|
|
|
|
__docformat__ = "restructuredtext en"
|
|
|
|
__all__ = ['find', 'tril', 'triu']
|
|
|
|
|
|
from ._coo import coo_matrix, coo_array
|
|
from ._base import sparray
|
|
|
|
|
|
def find(A):
|
|
"""Return the indices and values of the nonzero elements of a matrix
|
|
|
|
Parameters
|
|
----------
|
|
A : dense or sparse array or matrix
|
|
Matrix whose nonzero elements are desired.
|
|
|
|
Returns
|
|
-------
|
|
(I,J,V) : tuple of arrays
|
|
I,J, and V contain the row indices, column indices, and values
|
|
of the nonzero entries.
|
|
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.sparse import csr_array, find
|
|
>>> A = csr_array([[7.0, 8.0, 0],[0, 0, 9.0]])
|
|
>>> find(A)
|
|
(array([0, 0, 1], dtype=int32),
|
|
array([0, 1, 2], dtype=int32),
|
|
array([ 7., 8., 9.]))
|
|
|
|
"""
|
|
|
|
A = coo_array(A, copy=True)
|
|
A.sum_duplicates()
|
|
# remove explicit zeros
|
|
nz_mask = A.data != 0
|
|
return A.row[nz_mask], A.col[nz_mask], A.data[nz_mask]
|
|
|
|
|
|
def tril(A, k=0, format=None):
|
|
"""Return the lower triangular portion of a sparse array or matrix
|
|
|
|
Returns the elements on or below the k-th diagonal of A.
|
|
- k = 0 corresponds to the main diagonal
|
|
- k > 0 is above the main diagonal
|
|
- k < 0 is below the main diagonal
|
|
|
|
Parameters
|
|
----------
|
|
A : dense or sparse array or matrix
|
|
Matrix whose lower trianglar portion is desired.
|
|
k : integer : optional
|
|
The top-most diagonal of the lower triangle.
|
|
format : string
|
|
Sparse format of the result, e.g. format="csr", etc.
|
|
|
|
Returns
|
|
-------
|
|
L : sparse matrix
|
|
Lower triangular portion of A in sparse format.
|
|
|
|
See Also
|
|
--------
|
|
triu : upper triangle in sparse format
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.sparse import csr_array, tril
|
|
>>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
|
|
... dtype='int32')
|
|
>>> A.toarray()
|
|
array([[1, 2, 0, 0, 3],
|
|
[4, 5, 0, 6, 7],
|
|
[0, 0, 8, 9, 0]])
|
|
>>> tril(A).toarray()
|
|
array([[1, 0, 0, 0, 0],
|
|
[4, 5, 0, 0, 0],
|
|
[0, 0, 8, 0, 0]])
|
|
>>> tril(A).nnz
|
|
4
|
|
>>> tril(A, k=1).toarray()
|
|
array([[1, 2, 0, 0, 0],
|
|
[4, 5, 0, 0, 0],
|
|
[0, 0, 8, 9, 0]])
|
|
>>> tril(A, k=-1).toarray()
|
|
array([[0, 0, 0, 0, 0],
|
|
[4, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]])
|
|
>>> tril(A, format='csc')
|
|
<3x5 sparse array of type '<class 'numpy.int32'>'
|
|
with 4 stored elements in Compressed Sparse Column format>
|
|
|
|
"""
|
|
coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix
|
|
|
|
# convert to COOrdinate format where things are easy
|
|
A = coo_sparse(A, copy=False)
|
|
mask = A.row + k >= A.col
|
|
|
|
row = A.row[mask]
|
|
col = A.col[mask]
|
|
data = A.data[mask]
|
|
new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype)
|
|
return new_coo.asformat(format)
|
|
|
|
|
|
def triu(A, k=0, format=None):
|
|
"""Return the upper triangular portion of a sparse array or matrix
|
|
|
|
Returns the elements on or above the k-th diagonal of A.
|
|
- k = 0 corresponds to the main diagonal
|
|
- k > 0 is above the main diagonal
|
|
- k < 0 is below the main diagonal
|
|
|
|
Parameters
|
|
----------
|
|
A : dense or sparse array or matrix
|
|
Matrix whose upper trianglar portion is desired.
|
|
k : integer : optional
|
|
The bottom-most diagonal of the upper triangle.
|
|
format : string
|
|
Sparse format of the result, e.g. format="csr", etc.
|
|
|
|
Returns
|
|
-------
|
|
L : sparse array or matrix
|
|
Upper triangular portion of A in sparse format.
|
|
Sparse array if A is a sparse array, otherwise matrix.
|
|
|
|
See Also
|
|
--------
|
|
tril : lower triangle in sparse format
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.sparse import csr_array, triu
|
|
>>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
|
|
... dtype='int32')
|
|
>>> A.toarray()
|
|
array([[1, 2, 0, 0, 3],
|
|
[4, 5, 0, 6, 7],
|
|
[0, 0, 8, 9, 0]])
|
|
>>> triu(A).toarray()
|
|
array([[1, 2, 0, 0, 3],
|
|
[0, 5, 0, 6, 7],
|
|
[0, 0, 8, 9, 0]])
|
|
>>> triu(A).nnz
|
|
8
|
|
>>> triu(A, k=1).toarray()
|
|
array([[0, 2, 0, 0, 3],
|
|
[0, 0, 0, 6, 7],
|
|
[0, 0, 0, 9, 0]])
|
|
>>> triu(A, k=-1).toarray()
|
|
array([[1, 2, 0, 0, 3],
|
|
[4, 5, 0, 6, 7],
|
|
[0, 0, 8, 9, 0]])
|
|
>>> triu(A, format='csc')
|
|
<3x5 sparse array of type '<class 'numpy.int32'>'
|
|
with 8 stored elements in Compressed Sparse Column format>
|
|
|
|
"""
|
|
coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix
|
|
|
|
# convert to COOrdinate format where things are easy
|
|
A = coo_sparse(A, copy=False)
|
|
mask = A.row + k <= A.col
|
|
|
|
row = A.row[mask]
|
|
col = A.col[mask]
|
|
data = A.data[mask]
|
|
new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype)
|
|
return new_coo.asformat(format)
|