3RNN/Lib/site-packages/scipy/spatial/tests/test_spherical_voronoi.py
2024-05-26 19:49:15 +02:00

359 lines
14 KiB
Python

import numpy as np
import itertools
from numpy.testing import (assert_equal,
assert_almost_equal,
assert_array_equal,
assert_array_almost_equal)
import pytest
from pytest import raises as assert_raises
from scipy.spatial import SphericalVoronoi, distance
from scipy.optimize import linear_sum_assignment
from scipy.constants import golden as phi
from scipy.special import gamma
TOL = 1E-10
def _generate_tetrahedron():
return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
def _generate_cube():
return np.array(list(itertools.product([-1, 1.], repeat=3)))
def _generate_octahedron():
return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0],
[0, +1, 0], [0, 0, -1], [0, 0, +1]])
def _generate_dodecahedron():
x1 = _generate_cube()
x2 = np.array([[0, -phi, -1 / phi],
[0, -phi, +1 / phi],
[0, +phi, -1 / phi],
[0, +phi, +1 / phi]])
x3 = np.array([[-1 / phi, 0, -phi],
[+1 / phi, 0, -phi],
[-1 / phi, 0, +phi],
[+1 / phi, 0, +phi]])
x4 = np.array([[-phi, -1 / phi, 0],
[-phi, +1 / phi, 0],
[+phi, -1 / phi, 0],
[+phi, +1 / phi, 0]])
return np.concatenate((x1, x2, x3, x4))
def _generate_icosahedron():
x = np.array([[0, -1, -phi],
[0, -1, +phi],
[0, +1, -phi],
[0, +1, +phi]])
return np.concatenate([np.roll(x, i, axis=1) for i in range(3)])
def _generate_polytope(name):
polygons = ["triangle", "square", "pentagon", "hexagon", "heptagon",
"octagon", "nonagon", "decagon", "undecagon", "dodecagon"]
polyhedra = ["tetrahedron", "cube", "octahedron", "dodecahedron",
"icosahedron"]
if name not in polygons and name not in polyhedra:
raise ValueError("unrecognized polytope")
if name in polygons:
n = polygons.index(name) + 3
thetas = np.linspace(0, 2 * np.pi, n, endpoint=False)
p = np.vstack([np.cos(thetas), np.sin(thetas)]).T
elif name == "tetrahedron":
p = _generate_tetrahedron()
elif name == "cube":
p = _generate_cube()
elif name == "octahedron":
p = _generate_octahedron()
elif name == "dodecahedron":
p = _generate_dodecahedron()
elif name == "icosahedron":
p = _generate_icosahedron()
return p / np.linalg.norm(p, axis=1, keepdims=True)
def _hypersphere_area(dim, radius):
# https://en.wikipedia.org/wiki/N-sphere#Closed_forms
return 2 * np.pi**(dim / 2) / gamma(dim / 2) * radius**(dim - 1)
def _sample_sphere(n, dim, seed=None):
# Sample points uniformly at random from the hypersphere
rng = np.random.RandomState(seed=seed)
points = rng.randn(n, dim)
points /= np.linalg.norm(points, axis=1, keepdims=True)
return points
class TestSphericalVoronoi:
def setup_method(self):
self.points = np.array([
[-0.78928481, -0.16341094, 0.59188373],
[-0.66839141, 0.73309634, 0.12578818],
[0.32535778, -0.92476944, -0.19734181],
[-0.90177102, -0.03785291, -0.43055335],
[0.71781344, 0.68428936, 0.12842096],
[-0.96064876, 0.23492353, -0.14820556],
[0.73181537, -0.22025898, -0.6449281],
[0.79979205, 0.54555747, 0.25039913]]
)
def test_constructor(self):
center = np.array([1, 2, 3])
radius = 2
s1 = SphericalVoronoi(self.points)
# user input checks in SphericalVoronoi now require
# the radius / center to match the generators so adjust
# accordingly here
s2 = SphericalVoronoi(self.points * radius, radius)
s3 = SphericalVoronoi(self.points + center, center=center)
s4 = SphericalVoronoi(self.points * radius + center, radius, center)
assert_array_equal(s1.center, np.array([0, 0, 0]))
assert_equal(s1.radius, 1)
assert_array_equal(s2.center, np.array([0, 0, 0]))
assert_equal(s2.radius, 2)
assert_array_equal(s3.center, center)
assert_equal(s3.radius, 1)
assert_array_equal(s4.center, center)
assert_equal(s4.radius, radius)
# Test a non-sequence/-ndarray based array-like
s5 = SphericalVoronoi(memoryview(self.points)) # type: ignore[arg-type]
assert_array_equal(s5.center, np.array([0, 0, 0]))
assert_equal(s5.radius, 1)
def test_vertices_regions_translation_invariance(self):
sv_origin = SphericalVoronoi(self.points)
center = np.array([1, 1, 1])
sv_translated = SphericalVoronoi(self.points + center, center=center)
assert_equal(sv_origin.regions, sv_translated.regions)
assert_array_almost_equal(sv_origin.vertices + center,
sv_translated.vertices)
def test_vertices_regions_scaling_invariance(self):
sv_unit = SphericalVoronoi(self.points)
sv_scaled = SphericalVoronoi(self.points * 2, 2)
assert_equal(sv_unit.regions, sv_scaled.regions)
assert_array_almost_equal(sv_unit.vertices * 2,
sv_scaled.vertices)
def test_old_radius_api_error(self):
with pytest.raises(ValueError, match='`radius` is `None`. *'):
SphericalVoronoi(self.points, radius=None)
def test_sort_vertices_of_regions(self):
sv = SphericalVoronoi(self.points)
unsorted_regions = sv.regions
sv.sort_vertices_of_regions()
assert_equal(sorted(sv.regions), sorted(unsorted_regions))
def test_sort_vertices_of_regions_flattened(self):
expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1],
[4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5],
[1, 4, 8, 11, 9], [0, 3, 10, 9, 1]])
expected = list(itertools.chain(*sorted(expected))) # type: ignore
sv = SphericalVoronoi(self.points)
sv.sort_vertices_of_regions()
actual = list(itertools.chain(*sorted(sv.regions)))
assert_array_equal(actual, expected)
def test_sort_vertices_of_regions_dimensionality(self):
points = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0.5, 0.5, 0.5, 0.5]])
with pytest.raises(TypeError, match="three-dimensional"):
sv = SphericalVoronoi(points)
sv.sort_vertices_of_regions()
def test_num_vertices(self):
# for any n >= 3, a spherical Voronoi diagram has 2n - 4
# vertices; this is a direct consequence of Euler's formula
# as explained by Dinis and Mamede (2010) Proceedings of the
# 2010 International Symposium on Voronoi Diagrams in Science
# and Engineering
sv = SphericalVoronoi(self.points)
expected = self.points.shape[0] * 2 - 4
actual = sv.vertices.shape[0]
assert_equal(actual, expected)
def test_voronoi_circles(self):
sv = SphericalVoronoi(self.points)
for vertex in sv.vertices:
distances = distance.cdist(sv.points, np.array([vertex]))
closest = np.array(sorted(distances)[0:3])
assert_almost_equal(closest[0], closest[1], 7, str(vertex))
assert_almost_equal(closest[0], closest[2], 7, str(vertex))
def test_duplicate_point_handling(self):
# an exception should be raised for degenerate generators
# related to Issue# 7046
self.degenerate = np.concatenate((self.points, self.points))
with assert_raises(ValueError):
SphericalVoronoi(self.degenerate)
def test_incorrect_radius_handling(self):
# an exception should be raised if the radius provided
# cannot possibly match the input generators
with assert_raises(ValueError):
SphericalVoronoi(self.points, radius=0.98)
def test_incorrect_center_handling(self):
# an exception should be raised if the center provided
# cannot possibly match the input generators
with assert_raises(ValueError):
SphericalVoronoi(self.points, center=[0.1, 0, 0])
@pytest.mark.parametrize("dim", range(2, 6))
@pytest.mark.parametrize("shift", [False, True])
def test_single_hemisphere_handling(self, dim, shift):
n = 10
points = _sample_sphere(n, dim, seed=0)
points[:, 0] = np.abs(points[:, 0])
center = (np.arange(dim) + 1) * shift
sv = SphericalVoronoi(points + center, center=center)
dots = np.einsum('ij,ij->i', sv.vertices - center,
sv.points[sv._simplices[:, 0]] - center)
circumradii = np.arccos(np.clip(dots, -1, 1))
assert np.max(circumradii) > np.pi / 2
@pytest.mark.parametrize("n", [1, 2, 10])
@pytest.mark.parametrize("dim", range(2, 6))
@pytest.mark.parametrize("shift", [False, True])
def test_rank_deficient(self, n, dim, shift):
center = (np.arange(dim) + 1) * shift
points = _sample_sphere(n, dim - 1, seed=0)
points = np.hstack([points, np.zeros((n, 1))])
with pytest.raises(ValueError, match="Rank of input points"):
SphericalVoronoi(points + center, center=center)
@pytest.mark.parametrize("dim", range(2, 6))
def test_higher_dimensions(self, dim):
n = 100
points = _sample_sphere(n, dim, seed=0)
sv = SphericalVoronoi(points)
assert sv.vertices.shape[1] == dim
assert len(sv.regions) == n
# verify Euler characteristic
cell_counts = []
simplices = np.sort(sv._simplices)
for i in range(1, dim + 1):
cells = []
for indices in itertools.combinations(range(dim), i):
cells.append(simplices[:, list(indices)])
cells = np.unique(np.concatenate(cells), axis=0)
cell_counts.append(len(cells))
expected_euler = 1 + (-1)**(dim-1)
actual_euler = sum([(-1)**i * e for i, e in enumerate(cell_counts)])
assert expected_euler == actual_euler
@pytest.mark.parametrize("dim", range(2, 6))
def test_cross_polytope_regions(self, dim):
# The hypercube is the dual of the cross-polytope, so the voronoi
# vertices of the cross-polytope lie on the points of the hypercube.
# generate points of the cross-polytope
points = np.concatenate((-np.eye(dim), np.eye(dim)))
sv = SphericalVoronoi(points)
assert all([len(e) == 2**(dim - 1) for e in sv.regions])
# generate points of the hypercube
expected = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
expected = expected.astype(np.float64) / np.sqrt(dim)
# test that Voronoi vertices are correctly placed
dist = distance.cdist(sv.vertices, expected)
res = linear_sum_assignment(dist)
assert dist[res].sum() < TOL
@pytest.mark.parametrize("dim", range(2, 6))
def test_hypercube_regions(self, dim):
# The cross-polytope is the dual of the hypercube, so the voronoi
# vertices of the hypercube lie on the points of the cross-polytope.
# generate points of the hypercube
points = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
points = points.astype(np.float64) / np.sqrt(dim)
sv = SphericalVoronoi(points)
# generate points of the cross-polytope
expected = np.concatenate((-np.eye(dim), np.eye(dim)))
# test that Voronoi vertices are correctly placed
dist = distance.cdist(sv.vertices, expected)
res = linear_sum_assignment(dist)
assert dist[res].sum() < TOL
@pytest.mark.parametrize("n", [10, 500])
@pytest.mark.parametrize("dim", [2, 3])
@pytest.mark.parametrize("radius", [0.5, 1, 2])
@pytest.mark.parametrize("shift", [False, True])
@pytest.mark.parametrize("single_hemisphere", [False, True])
def test_area_reconstitution(self, n, dim, radius, shift,
single_hemisphere):
points = _sample_sphere(n, dim, seed=0)
# move all points to one side of the sphere for single-hemisphere test
if single_hemisphere:
points[:, 0] = np.abs(points[:, 0])
center = (np.arange(dim) + 1) * shift
points = radius * points + center
sv = SphericalVoronoi(points, radius=radius, center=center)
areas = sv.calculate_areas()
assert_almost_equal(areas.sum(), _hypersphere_area(dim, radius))
@pytest.mark.parametrize("poly", ["triangle", "dodecagon",
"tetrahedron", "cube", "octahedron",
"dodecahedron", "icosahedron"])
def test_equal_area_reconstitution(self, poly):
points = _generate_polytope(poly)
n, dim = points.shape
sv = SphericalVoronoi(points)
areas = sv.calculate_areas()
assert_almost_equal(areas, _hypersphere_area(dim, 1) / n)
def test_area_unsupported_dimension(self):
dim = 4
points = np.concatenate((-np.eye(dim), np.eye(dim)))
sv = SphericalVoronoi(points)
with pytest.raises(TypeError, match="Only supported"):
sv.calculate_areas()
@pytest.mark.parametrize("radius", [1, 1.])
@pytest.mark.parametrize("center", [None, (1, 2, 3), (1., 2., 3.)])
def test_attribute_types(self, radius, center):
points = radius * self.points
if center is not None:
points += center
sv = SphericalVoronoi(points, radius=radius, center=center)
assert sv.points.dtype is np.dtype(np.float64)
assert sv.center.dtype is np.dtype(np.float64)
assert isinstance(sv.radius, float)
def test_region_types(self):
# Tests that region integer type does not change
# See Issue #13412
sv = SphericalVoronoi(self.points)
dtype = type(sv.regions[0][0])
# also enforce nested list type per gh-19177
for region in sv.regions:
assert isinstance(region, list)
sv.sort_vertices_of_regions()
assert type(sv.regions[0][0]) == dtype
sv.sort_vertices_of_regions()
assert type(sv.regions[0][0]) == dtype