359 lines
14 KiB
Python
359 lines
14 KiB
Python
import numpy as np
|
|
import itertools
|
|
from numpy.testing import (assert_equal,
|
|
assert_almost_equal,
|
|
assert_array_equal,
|
|
assert_array_almost_equal)
|
|
import pytest
|
|
from pytest import raises as assert_raises
|
|
from scipy.spatial import SphericalVoronoi, distance
|
|
from scipy.optimize import linear_sum_assignment
|
|
from scipy.constants import golden as phi
|
|
from scipy.special import gamma
|
|
|
|
|
|
TOL = 1E-10
|
|
|
|
|
|
def _generate_tetrahedron():
|
|
return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
|
|
|
|
|
|
def _generate_cube():
|
|
return np.array(list(itertools.product([-1, 1.], repeat=3)))
|
|
|
|
|
|
def _generate_octahedron():
|
|
return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0],
|
|
[0, +1, 0], [0, 0, -1], [0, 0, +1]])
|
|
|
|
|
|
def _generate_dodecahedron():
|
|
|
|
x1 = _generate_cube()
|
|
x2 = np.array([[0, -phi, -1 / phi],
|
|
[0, -phi, +1 / phi],
|
|
[0, +phi, -1 / phi],
|
|
[0, +phi, +1 / phi]])
|
|
x3 = np.array([[-1 / phi, 0, -phi],
|
|
[+1 / phi, 0, -phi],
|
|
[-1 / phi, 0, +phi],
|
|
[+1 / phi, 0, +phi]])
|
|
x4 = np.array([[-phi, -1 / phi, 0],
|
|
[-phi, +1 / phi, 0],
|
|
[+phi, -1 / phi, 0],
|
|
[+phi, +1 / phi, 0]])
|
|
return np.concatenate((x1, x2, x3, x4))
|
|
|
|
|
|
def _generate_icosahedron():
|
|
x = np.array([[0, -1, -phi],
|
|
[0, -1, +phi],
|
|
[0, +1, -phi],
|
|
[0, +1, +phi]])
|
|
return np.concatenate([np.roll(x, i, axis=1) for i in range(3)])
|
|
|
|
|
|
def _generate_polytope(name):
|
|
polygons = ["triangle", "square", "pentagon", "hexagon", "heptagon",
|
|
"octagon", "nonagon", "decagon", "undecagon", "dodecagon"]
|
|
polyhedra = ["tetrahedron", "cube", "octahedron", "dodecahedron",
|
|
"icosahedron"]
|
|
if name not in polygons and name not in polyhedra:
|
|
raise ValueError("unrecognized polytope")
|
|
|
|
if name in polygons:
|
|
n = polygons.index(name) + 3
|
|
thetas = np.linspace(0, 2 * np.pi, n, endpoint=False)
|
|
p = np.vstack([np.cos(thetas), np.sin(thetas)]).T
|
|
elif name == "tetrahedron":
|
|
p = _generate_tetrahedron()
|
|
elif name == "cube":
|
|
p = _generate_cube()
|
|
elif name == "octahedron":
|
|
p = _generate_octahedron()
|
|
elif name == "dodecahedron":
|
|
p = _generate_dodecahedron()
|
|
elif name == "icosahedron":
|
|
p = _generate_icosahedron()
|
|
|
|
return p / np.linalg.norm(p, axis=1, keepdims=True)
|
|
|
|
|
|
def _hypersphere_area(dim, radius):
|
|
# https://en.wikipedia.org/wiki/N-sphere#Closed_forms
|
|
return 2 * np.pi**(dim / 2) / gamma(dim / 2) * radius**(dim - 1)
|
|
|
|
|
|
def _sample_sphere(n, dim, seed=None):
|
|
# Sample points uniformly at random from the hypersphere
|
|
rng = np.random.RandomState(seed=seed)
|
|
points = rng.randn(n, dim)
|
|
points /= np.linalg.norm(points, axis=1, keepdims=True)
|
|
return points
|
|
|
|
|
|
class TestSphericalVoronoi:
|
|
|
|
def setup_method(self):
|
|
self.points = np.array([
|
|
[-0.78928481, -0.16341094, 0.59188373],
|
|
[-0.66839141, 0.73309634, 0.12578818],
|
|
[0.32535778, -0.92476944, -0.19734181],
|
|
[-0.90177102, -0.03785291, -0.43055335],
|
|
[0.71781344, 0.68428936, 0.12842096],
|
|
[-0.96064876, 0.23492353, -0.14820556],
|
|
[0.73181537, -0.22025898, -0.6449281],
|
|
[0.79979205, 0.54555747, 0.25039913]]
|
|
)
|
|
|
|
def test_constructor(self):
|
|
center = np.array([1, 2, 3])
|
|
radius = 2
|
|
s1 = SphericalVoronoi(self.points)
|
|
# user input checks in SphericalVoronoi now require
|
|
# the radius / center to match the generators so adjust
|
|
# accordingly here
|
|
s2 = SphericalVoronoi(self.points * radius, radius)
|
|
s3 = SphericalVoronoi(self.points + center, center=center)
|
|
s4 = SphericalVoronoi(self.points * radius + center, radius, center)
|
|
assert_array_equal(s1.center, np.array([0, 0, 0]))
|
|
assert_equal(s1.radius, 1)
|
|
assert_array_equal(s2.center, np.array([0, 0, 0]))
|
|
assert_equal(s2.radius, 2)
|
|
assert_array_equal(s3.center, center)
|
|
assert_equal(s3.radius, 1)
|
|
assert_array_equal(s4.center, center)
|
|
assert_equal(s4.radius, radius)
|
|
|
|
# Test a non-sequence/-ndarray based array-like
|
|
s5 = SphericalVoronoi(memoryview(self.points)) # type: ignore[arg-type]
|
|
assert_array_equal(s5.center, np.array([0, 0, 0]))
|
|
assert_equal(s5.radius, 1)
|
|
|
|
def test_vertices_regions_translation_invariance(self):
|
|
sv_origin = SphericalVoronoi(self.points)
|
|
center = np.array([1, 1, 1])
|
|
sv_translated = SphericalVoronoi(self.points + center, center=center)
|
|
assert_equal(sv_origin.regions, sv_translated.regions)
|
|
assert_array_almost_equal(sv_origin.vertices + center,
|
|
sv_translated.vertices)
|
|
|
|
def test_vertices_regions_scaling_invariance(self):
|
|
sv_unit = SphericalVoronoi(self.points)
|
|
sv_scaled = SphericalVoronoi(self.points * 2, 2)
|
|
assert_equal(sv_unit.regions, sv_scaled.regions)
|
|
assert_array_almost_equal(sv_unit.vertices * 2,
|
|
sv_scaled.vertices)
|
|
|
|
def test_old_radius_api_error(self):
|
|
with pytest.raises(ValueError, match='`radius` is `None`. *'):
|
|
SphericalVoronoi(self.points, radius=None)
|
|
|
|
def test_sort_vertices_of_regions(self):
|
|
sv = SphericalVoronoi(self.points)
|
|
unsorted_regions = sv.regions
|
|
sv.sort_vertices_of_regions()
|
|
assert_equal(sorted(sv.regions), sorted(unsorted_regions))
|
|
|
|
def test_sort_vertices_of_regions_flattened(self):
|
|
expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1],
|
|
[4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5],
|
|
[1, 4, 8, 11, 9], [0, 3, 10, 9, 1]])
|
|
expected = list(itertools.chain(*sorted(expected))) # type: ignore
|
|
sv = SphericalVoronoi(self.points)
|
|
sv.sort_vertices_of_regions()
|
|
actual = list(itertools.chain(*sorted(sv.regions)))
|
|
assert_array_equal(actual, expected)
|
|
|
|
def test_sort_vertices_of_regions_dimensionality(self):
|
|
points = np.array([[1, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 1],
|
|
[0.5, 0.5, 0.5, 0.5]])
|
|
with pytest.raises(TypeError, match="three-dimensional"):
|
|
sv = SphericalVoronoi(points)
|
|
sv.sort_vertices_of_regions()
|
|
|
|
def test_num_vertices(self):
|
|
# for any n >= 3, a spherical Voronoi diagram has 2n - 4
|
|
# vertices; this is a direct consequence of Euler's formula
|
|
# as explained by Dinis and Mamede (2010) Proceedings of the
|
|
# 2010 International Symposium on Voronoi Diagrams in Science
|
|
# and Engineering
|
|
sv = SphericalVoronoi(self.points)
|
|
expected = self.points.shape[0] * 2 - 4
|
|
actual = sv.vertices.shape[0]
|
|
assert_equal(actual, expected)
|
|
|
|
def test_voronoi_circles(self):
|
|
sv = SphericalVoronoi(self.points)
|
|
for vertex in sv.vertices:
|
|
distances = distance.cdist(sv.points, np.array([vertex]))
|
|
closest = np.array(sorted(distances)[0:3])
|
|
assert_almost_equal(closest[0], closest[1], 7, str(vertex))
|
|
assert_almost_equal(closest[0], closest[2], 7, str(vertex))
|
|
|
|
def test_duplicate_point_handling(self):
|
|
# an exception should be raised for degenerate generators
|
|
# related to Issue# 7046
|
|
self.degenerate = np.concatenate((self.points, self.points))
|
|
with assert_raises(ValueError):
|
|
SphericalVoronoi(self.degenerate)
|
|
|
|
def test_incorrect_radius_handling(self):
|
|
# an exception should be raised if the radius provided
|
|
# cannot possibly match the input generators
|
|
with assert_raises(ValueError):
|
|
SphericalVoronoi(self.points, radius=0.98)
|
|
|
|
def test_incorrect_center_handling(self):
|
|
# an exception should be raised if the center provided
|
|
# cannot possibly match the input generators
|
|
with assert_raises(ValueError):
|
|
SphericalVoronoi(self.points, center=[0.1, 0, 0])
|
|
|
|
@pytest.mark.parametrize("dim", range(2, 6))
|
|
@pytest.mark.parametrize("shift", [False, True])
|
|
def test_single_hemisphere_handling(self, dim, shift):
|
|
n = 10
|
|
points = _sample_sphere(n, dim, seed=0)
|
|
points[:, 0] = np.abs(points[:, 0])
|
|
center = (np.arange(dim) + 1) * shift
|
|
sv = SphericalVoronoi(points + center, center=center)
|
|
dots = np.einsum('ij,ij->i', sv.vertices - center,
|
|
sv.points[sv._simplices[:, 0]] - center)
|
|
circumradii = np.arccos(np.clip(dots, -1, 1))
|
|
assert np.max(circumradii) > np.pi / 2
|
|
|
|
@pytest.mark.parametrize("n", [1, 2, 10])
|
|
@pytest.mark.parametrize("dim", range(2, 6))
|
|
@pytest.mark.parametrize("shift", [False, True])
|
|
def test_rank_deficient(self, n, dim, shift):
|
|
center = (np.arange(dim) + 1) * shift
|
|
points = _sample_sphere(n, dim - 1, seed=0)
|
|
points = np.hstack([points, np.zeros((n, 1))])
|
|
with pytest.raises(ValueError, match="Rank of input points"):
|
|
SphericalVoronoi(points + center, center=center)
|
|
|
|
@pytest.mark.parametrize("dim", range(2, 6))
|
|
def test_higher_dimensions(self, dim):
|
|
n = 100
|
|
points = _sample_sphere(n, dim, seed=0)
|
|
sv = SphericalVoronoi(points)
|
|
assert sv.vertices.shape[1] == dim
|
|
assert len(sv.regions) == n
|
|
|
|
# verify Euler characteristic
|
|
cell_counts = []
|
|
simplices = np.sort(sv._simplices)
|
|
for i in range(1, dim + 1):
|
|
cells = []
|
|
for indices in itertools.combinations(range(dim), i):
|
|
cells.append(simplices[:, list(indices)])
|
|
cells = np.unique(np.concatenate(cells), axis=0)
|
|
cell_counts.append(len(cells))
|
|
expected_euler = 1 + (-1)**(dim-1)
|
|
actual_euler = sum([(-1)**i * e for i, e in enumerate(cell_counts)])
|
|
assert expected_euler == actual_euler
|
|
|
|
@pytest.mark.parametrize("dim", range(2, 6))
|
|
def test_cross_polytope_regions(self, dim):
|
|
# The hypercube is the dual of the cross-polytope, so the voronoi
|
|
# vertices of the cross-polytope lie on the points of the hypercube.
|
|
|
|
# generate points of the cross-polytope
|
|
points = np.concatenate((-np.eye(dim), np.eye(dim)))
|
|
sv = SphericalVoronoi(points)
|
|
assert all([len(e) == 2**(dim - 1) for e in sv.regions])
|
|
|
|
# generate points of the hypercube
|
|
expected = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
|
|
expected = expected.astype(np.float64) / np.sqrt(dim)
|
|
|
|
# test that Voronoi vertices are correctly placed
|
|
dist = distance.cdist(sv.vertices, expected)
|
|
res = linear_sum_assignment(dist)
|
|
assert dist[res].sum() < TOL
|
|
|
|
@pytest.mark.parametrize("dim", range(2, 6))
|
|
def test_hypercube_regions(self, dim):
|
|
# The cross-polytope is the dual of the hypercube, so the voronoi
|
|
# vertices of the hypercube lie on the points of the cross-polytope.
|
|
|
|
# generate points of the hypercube
|
|
points = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
|
|
points = points.astype(np.float64) / np.sqrt(dim)
|
|
sv = SphericalVoronoi(points)
|
|
|
|
# generate points of the cross-polytope
|
|
expected = np.concatenate((-np.eye(dim), np.eye(dim)))
|
|
|
|
# test that Voronoi vertices are correctly placed
|
|
dist = distance.cdist(sv.vertices, expected)
|
|
res = linear_sum_assignment(dist)
|
|
assert dist[res].sum() < TOL
|
|
|
|
@pytest.mark.parametrize("n", [10, 500])
|
|
@pytest.mark.parametrize("dim", [2, 3])
|
|
@pytest.mark.parametrize("radius", [0.5, 1, 2])
|
|
@pytest.mark.parametrize("shift", [False, True])
|
|
@pytest.mark.parametrize("single_hemisphere", [False, True])
|
|
def test_area_reconstitution(self, n, dim, radius, shift,
|
|
single_hemisphere):
|
|
points = _sample_sphere(n, dim, seed=0)
|
|
|
|
# move all points to one side of the sphere for single-hemisphere test
|
|
if single_hemisphere:
|
|
points[:, 0] = np.abs(points[:, 0])
|
|
|
|
center = (np.arange(dim) + 1) * shift
|
|
points = radius * points + center
|
|
|
|
sv = SphericalVoronoi(points, radius=radius, center=center)
|
|
areas = sv.calculate_areas()
|
|
assert_almost_equal(areas.sum(), _hypersphere_area(dim, radius))
|
|
|
|
@pytest.mark.parametrize("poly", ["triangle", "dodecagon",
|
|
"tetrahedron", "cube", "octahedron",
|
|
"dodecahedron", "icosahedron"])
|
|
def test_equal_area_reconstitution(self, poly):
|
|
points = _generate_polytope(poly)
|
|
n, dim = points.shape
|
|
sv = SphericalVoronoi(points)
|
|
areas = sv.calculate_areas()
|
|
assert_almost_equal(areas, _hypersphere_area(dim, 1) / n)
|
|
|
|
def test_area_unsupported_dimension(self):
|
|
dim = 4
|
|
points = np.concatenate((-np.eye(dim), np.eye(dim)))
|
|
sv = SphericalVoronoi(points)
|
|
with pytest.raises(TypeError, match="Only supported"):
|
|
sv.calculate_areas()
|
|
|
|
@pytest.mark.parametrize("radius", [1, 1.])
|
|
@pytest.mark.parametrize("center", [None, (1, 2, 3), (1., 2., 3.)])
|
|
def test_attribute_types(self, radius, center):
|
|
points = radius * self.points
|
|
if center is not None:
|
|
points += center
|
|
|
|
sv = SphericalVoronoi(points, radius=radius, center=center)
|
|
assert sv.points.dtype is np.dtype(np.float64)
|
|
assert sv.center.dtype is np.dtype(np.float64)
|
|
assert isinstance(sv.radius, float)
|
|
|
|
def test_region_types(self):
|
|
# Tests that region integer type does not change
|
|
# See Issue #13412
|
|
sv = SphericalVoronoi(self.points)
|
|
dtype = type(sv.regions[0][0])
|
|
# also enforce nested list type per gh-19177
|
|
for region in sv.regions:
|
|
assert isinstance(region, list)
|
|
sv.sort_vertices_of_regions()
|
|
assert type(sv.regions[0][0]) == dtype
|
|
sv.sort_vertices_of_regions()
|
|
assert type(sv.regions[0][0]) == dtype
|