3RNN/Lib/site-packages/sklearn/metrics/tests/test_pairwise.py
2024-05-26 19:49:15 +02:00

1669 lines
57 KiB
Python

import warnings
from types import GeneratorType
import numpy as np
from numpy import linalg
from scipy.sparse import issparse
from scipy.spatial.distance import (
cdist,
cityblock,
cosine,
minkowski,
pdist,
squareform,
)
try:
from scipy.spatial.distance import wminkowski
except ImportError:
# In scipy 1.6.0, wminkowski is deprecated and minkowski
# should be used instead.
from scipy.spatial.distance import minkowski as wminkowski
import pytest
from sklearn import config_context
from sklearn.exceptions import DataConversionWarning
from sklearn.metrics.pairwise import (
PAIRED_DISTANCES,
PAIRWISE_BOOLEAN_FUNCTIONS,
PAIRWISE_DISTANCE_FUNCTIONS,
PAIRWISE_KERNEL_FUNCTIONS,
_euclidean_distances_upcast,
additive_chi2_kernel,
check_paired_arrays,
check_pairwise_arrays,
chi2_kernel,
cosine_distances,
cosine_similarity,
euclidean_distances,
haversine_distances,
laplacian_kernel,
linear_kernel,
manhattan_distances,
nan_euclidean_distances,
paired_cosine_distances,
paired_distances,
paired_euclidean_distances,
paired_manhattan_distances,
pairwise_distances,
pairwise_distances_argmin,
pairwise_distances_argmin_min,
pairwise_distances_chunked,
pairwise_kernels,
polynomial_kernel,
rbf_kernel,
sigmoid_kernel,
)
from sklearn.preprocessing import normalize
from sklearn.utils._testing import (
assert_allclose,
assert_almost_equal,
assert_array_equal,
ignore_warnings,
)
from sklearn.utils.fixes import (
BSR_CONTAINERS,
COO_CONTAINERS,
CSC_CONTAINERS,
CSR_CONTAINERS,
DOK_CONTAINERS,
parse_version,
sp_version,
)
from sklearn.utils.parallel import Parallel, delayed
def test_pairwise_distances_for_dense_data(global_dtype):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
S = pairwise_distances(X, metric="euclidean")
S2 = euclidean_distances(X)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
# Euclidean distance, with Y != X.
Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
S = pairwise_distances(X, Y, metric="euclidean")
S2 = euclidean_distances(X, Y)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
# Check to ensure NaNs work with pairwise_distances.
X_masked = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
Y_masked = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
X_masked[0, 0] = np.nan
Y_masked[0, 0] = np.nan
S_masked = pairwise_distances(X_masked, Y_masked, metric="nan_euclidean")
S2_masked = nan_euclidean_distances(X_masked, Y_masked)
assert_allclose(S_masked, S2_masked)
assert S_masked.dtype == S2_masked.dtype == global_dtype
# Test with tuples as X and Y
X_tuples = tuple([tuple([v for v in row]) for row in X])
Y_tuples = tuple([tuple([v for v in row]) for row in Y])
S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean")
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
# Test haversine distance
# The data should be valid latitude and longitude
# haversine converts to float64 currently so we don't check dtypes.
X = rng.random_sample((5, 2)).astype(global_dtype, copy=False)
X[:, 0] = (X[:, 0] - 0.5) * 2 * np.pi / 2
X[:, 1] = (X[:, 1] - 0.5) * 2 * np.pi
S = pairwise_distances(X, metric="haversine")
S2 = haversine_distances(X)
assert_allclose(S, S2)
# Test haversine distance, with Y != X
Y = rng.random_sample((2, 2)).astype(global_dtype, copy=False)
Y[:, 0] = (Y[:, 0] - 0.5) * 2 * np.pi / 2
Y[:, 1] = (Y[:, 1] - 0.5) * 2 * np.pi
S = pairwise_distances(X, Y, metric="haversine")
S2 = haversine_distances(X, Y)
assert_allclose(S, S2)
# "cityblock" uses scikit-learn metric, cityblock (function) is
# scipy.spatial.
# The metric functions from scipy converts to float64 so we don't check the dtypes.
S = pairwise_distances(X, metric="cityblock")
S2 = pairwise_distances(X, metric=cityblock)
assert S.shape[0] == S.shape[1]
assert S.shape[0] == X.shape[0]
assert_allclose(S, S2)
# The manhattan metric should be equivalent to cityblock.
S = pairwise_distances(X, Y, metric="manhattan")
S2 = pairwise_distances(X, Y, metric=cityblock)
assert S.shape[0] == X.shape[0]
assert S.shape[1] == Y.shape[0]
assert_allclose(S, S2)
# Test cosine as a string metric versus cosine callable
# The string "cosine" uses sklearn.metric,
# while the function cosine is scipy.spatial
S = pairwise_distances(X, Y, metric="cosine")
S2 = pairwise_distances(X, Y, metric=cosine)
assert S.shape[0] == X.shape[0]
assert S.shape[1] == Y.shape[0]
assert_allclose(S, S2)
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("bsr_container", BSR_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_distances_for_sparse_data(
coo_container, csc_container, bsr_container, csr_container, global_dtype
):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False)
# Test with sparse X and Y,
# currently only supported for Euclidean, L1 and cosine.
X_sparse = csr_container(X)
Y_sparse = csr_container(Y)
S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean")
S2 = euclidean_distances(X_sparse, Y_sparse)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
S = pairwise_distances(X_sparse, Y_sparse, metric="cosine")
S2 = cosine_distances(X_sparse, Y_sparse)
assert_allclose(S, S2)
assert S.dtype == S2.dtype == global_dtype
S = pairwise_distances(X_sparse, csc_container(Y), metric="manhattan")
S2 = manhattan_distances(bsr_container(X), coo_container(Y))
assert_allclose(S, S2)
if global_dtype == np.float64:
assert S.dtype == S2.dtype == global_dtype
else:
# TODO Fix manhattan_distances to preserve dtype.
# currently pairwise_distances uses manhattan_distances but converts the result
# back to the input dtype
with pytest.raises(AssertionError):
assert S.dtype == S2.dtype == global_dtype
S2 = manhattan_distances(X, Y)
assert_allclose(S, S2)
if global_dtype == np.float64:
assert S.dtype == S2.dtype == global_dtype
else:
# TODO Fix manhattan_distances to preserve dtype.
# currently pairwise_distances uses manhattan_distances but converts the result
# back to the input dtype
with pytest.raises(AssertionError):
assert S.dtype == S2.dtype == global_dtype
# Test with scipy.spatial.distance metric, with a kwd
kwds = {"p": 2.0}
S = pairwise_distances(X, Y, metric="minkowski", **kwds)
S2 = pairwise_distances(X, Y, metric=minkowski, **kwds)
assert_allclose(S, S2)
# same with Y = None
kwds = {"p": 2.0}
S = pairwise_distances(X, metric="minkowski", **kwds)
S2 = pairwise_distances(X, metric=minkowski, **kwds)
assert_allclose(S, S2)
# Test that scipy distance metrics throw an error if sparse matrix given
with pytest.raises(TypeError):
pairwise_distances(X_sparse, metric="minkowski")
with pytest.raises(TypeError):
pairwise_distances(X, Y_sparse, metric="minkowski")
@pytest.mark.parametrize("metric", PAIRWISE_BOOLEAN_FUNCTIONS)
def test_pairwise_boolean_distance(metric):
# test that we convert to boolean arrays for boolean distances
rng = np.random.RandomState(0)
X = rng.randn(5, 4)
Y = X.copy()
Y[0, 0] = 1 - Y[0, 0]
# ignore conversion to boolean in pairwise_distances
with ignore_warnings(category=DataConversionWarning):
for Z in [Y, None]:
res = pairwise_distances(X, Z, metric=metric)
np.nan_to_num(res, nan=0, posinf=0, neginf=0, copy=False)
assert np.sum(res != 0) == 0
# non-boolean arrays are converted to boolean for boolean
# distance metrics with a data conversion warning
msg = "Data was converted to boolean for metric %s" % metric
with pytest.warns(DataConversionWarning, match=msg):
pairwise_distances(X, metric=metric)
# Check that the warning is raised if X is boolean by Y is not boolean:
with pytest.warns(DataConversionWarning, match=msg):
pairwise_distances(X.astype(bool), Y=Y, metric=metric)
# Check that no warning is raised if X is already boolean and Y is None:
with warnings.catch_warnings():
warnings.simplefilter("error", DataConversionWarning)
pairwise_distances(X.astype(bool), metric=metric)
def test_no_data_conversion_warning():
# No warnings issued if metric is not a boolean distance function
rng = np.random.RandomState(0)
X = rng.randn(5, 4)
with warnings.catch_warnings():
warnings.simplefilter("error", DataConversionWarning)
pairwise_distances(X, metric="minkowski")
@pytest.mark.parametrize("func", [pairwise_distances, pairwise_kernels])
def test_pairwise_precomputed(func):
# Test correct shape
with pytest.raises(ValueError, match=".* shape .*"):
func(np.zeros((5, 3)), metric="precomputed")
# with two args
with pytest.raises(ValueError, match=".* shape .*"):
func(np.zeros((5, 3)), np.zeros((4, 4)), metric="precomputed")
# even if shape[1] agrees (although thus second arg is spurious)
with pytest.raises(ValueError, match=".* shape .*"):
func(np.zeros((5, 3)), np.zeros((4, 3)), metric="precomputed")
# Test not copied (if appropriate dtype)
S = np.zeros((5, 5))
S2 = func(S, metric="precomputed")
assert S is S2
# with two args
S = np.zeros((5, 3))
S2 = func(S, np.zeros((3, 3)), metric="precomputed")
assert S is S2
# Test always returns float dtype
S = func(np.array([[1]], dtype="int"), metric="precomputed")
assert "f" == S.dtype.kind
# Test converts list to array-like
S = func([[1.0]], metric="precomputed")
assert isinstance(S, np.ndarray)
def test_pairwise_precomputed_non_negative():
# Test non-negative values
with pytest.raises(ValueError, match=".* non-negative values.*"):
pairwise_distances(np.full((5, 5), -1), metric="precomputed")
_minkowski_kwds = {"w": np.arange(1, 5).astype("double", copy=False), "p": 1}
_wminkowski_kwds = {"w": np.arange(1, 5).astype("double", copy=False), "p": 1}
def callable_rbf_kernel(x, y, **kwds):
# Callable version of pairwise.rbf_kernel.
K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds)
# unpack the output since this is a scalar packed in a 0-dim array
return K.item()
@pytest.mark.parametrize(
"func, metric, kwds",
[
(pairwise_distances, "euclidean", {}),
pytest.param(
pairwise_distances,
minkowski,
_minkowski_kwds,
),
pytest.param(
pairwise_distances,
"minkowski",
_minkowski_kwds,
),
pytest.param(
pairwise_distances,
wminkowski,
_wminkowski_kwds,
marks=pytest.mark.skipif(
sp_version >= parse_version("1.6.0"),
reason="wminkowski is now minkowski and it has been already tested.",
),
),
pytest.param(
pairwise_distances,
"wminkowski",
_wminkowski_kwds,
marks=pytest.mark.skipif(
sp_version >= parse_version("1.6.0"),
reason="wminkowski is now minkowski and it has been already tested.",
),
),
(pairwise_kernels, "polynomial", {"degree": 1}),
(pairwise_kernels, callable_rbf_kernel, {"gamma": 0.1}),
],
)
@pytest.mark.parametrize("dtype", [np.float64, np.float32, int])
def test_pairwise_parallel(func, metric, kwds, dtype):
rng = np.random.RandomState(0)
X = np.array(5 * rng.random_sample((5, 4)), dtype=dtype)
Y = np.array(5 * rng.random_sample((3, 4)), dtype=dtype)
S = func(X, metric=metric, n_jobs=1, **kwds)
S2 = func(X, metric=metric, n_jobs=2, **kwds)
assert_allclose(S, S2)
S = func(X, Y, metric=metric, n_jobs=1, **kwds)
S2 = func(X, Y, metric=metric, n_jobs=2, **kwds)
assert_allclose(S, S2)
def test_pairwise_callable_nonstrict_metric():
# paired_distances should allow callable metric where metric(x, x) != 0
# Knowing that the callable is a strict metric would allow the diagonal to
# be left uncalculated and set to 0.
assert pairwise_distances([[1.0]], metric=lambda x, y: 5)[0, 0] == 5
# Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS.
@pytest.mark.parametrize(
"metric",
["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_kernels(metric, csr_container):
# Test the pairwise_kernels helper function.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
function = PAIRWISE_KERNEL_FUNCTIONS[metric]
# Test with Y=None
K1 = pairwise_kernels(X, metric=metric)
K2 = function(X)
assert_allclose(K1, K2)
# Test with Y=Y
K1 = pairwise_kernels(X, Y=Y, metric=metric)
K2 = function(X, Y=Y)
assert_allclose(K1, K2)
# Test with tuples as X and Y
X_tuples = tuple([tuple([v for v in row]) for row in X])
Y_tuples = tuple([tuple([v for v in row]) for row in Y])
K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
assert_allclose(K1, K2)
# Test with sparse X and Y
X_sparse = csr_container(X)
Y_sparse = csr_container(Y)
if metric in ["chi2", "additive_chi2"]:
# these don't support sparse matrices yet
return
K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
assert_allclose(K1, K2)
def test_pairwise_kernels_callable():
# Test the pairwise_kernels helper function
# with a callable function, with given keywords.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
metric = callable_rbf_kernel
kwds = {"gamma": 0.1}
K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
K2 = rbf_kernel(X, Y=Y, **kwds)
assert_allclose(K1, K2)
# callable function, X=Y
K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
K2 = rbf_kernel(X, Y=X, **kwds)
assert_allclose(K1, K2)
def test_pairwise_kernels_filter_param():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
K = rbf_kernel(X, Y, gamma=0.1)
params = {"gamma": 0.1, "blabla": ":)"}
K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
assert_allclose(K, K2)
with pytest.raises(TypeError):
pairwise_kernels(X, Y, metric="rbf", **params)
@pytest.mark.parametrize("metric, func", PAIRED_DISTANCES.items())
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_paired_distances(metric, func, csr_container):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4))
# Euclidean distance, with Y != X.
Y = rng.random_sample((5, 4))
S = paired_distances(X, Y, metric=metric)
S2 = func(X, Y)
assert_allclose(S, S2)
S3 = func(csr_container(X), csr_container(Y))
assert_allclose(S, S3)
if metric in PAIRWISE_DISTANCE_FUNCTIONS:
# Check the pairwise_distances implementation
# gives the same value
distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y)
distances = np.diag(distances)
assert_allclose(distances, S)
def test_paired_distances_callable(global_dtype):
# Test the paired_distance helper function
# with the callable implementation
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
# Euclidean distance, with Y != X.
Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
S = paired_distances(X, Y, metric="manhattan")
S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0))
assert_allclose(S, S2)
# Test that a value error is raised when the lengths of X and Y should not
# differ
Y = rng.random_sample((3, 4))
with pytest.raises(ValueError):
paired_distances(X, Y)
@pytest.mark.parametrize("dok_container", DOK_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_distances_argmin_min(dok_container, csr_container, global_dtype):
# Check pairwise minimum distances computation for any metric
X = np.asarray([[0], [1]], dtype=global_dtype)
Y = np.asarray([[-2], [3]], dtype=global_dtype)
Xsp = dok_container(X)
Ysp = csr_container(Y, dtype=global_dtype)
expected_idx = [0, 1]
expected_vals = [2, 2]
expected_vals_sq = [4, 4]
# euclidean metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean")
idx2 = pairwise_distances_argmin(X, Y, metric="euclidean")
assert_allclose(idx, expected_idx)
assert_allclose(idx2, expected_idx)
assert_allclose(vals, expected_vals)
# sparse matrix case
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean")
idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="euclidean")
assert_allclose(idxsp, expected_idx)
assert_allclose(idxsp2, expected_idx)
assert_allclose(valssp, expected_vals)
# We don't want np.matrix here
assert type(idxsp) == np.ndarray
assert type(valssp) == np.ndarray
# Squared Euclidean metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="sqeuclidean")
idx2, vals2 = pairwise_distances_argmin_min(
X, Y, metric="euclidean", metric_kwargs={"squared": True}
)
idx3 = pairwise_distances_argmin(X, Y, metric="sqeuclidean")
idx4 = pairwise_distances_argmin(
X, Y, metric="euclidean", metric_kwargs={"squared": True}
)
assert_allclose(vals, expected_vals_sq)
assert_allclose(vals2, expected_vals_sq)
assert_allclose(idx, expected_idx)
assert_allclose(idx2, expected_idx)
assert_allclose(idx3, expected_idx)
assert_allclose(idx4, expected_idx)
# Non-euclidean scikit-learn metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="manhattan")
idx2 = pairwise_distances_argmin(X, Y, metric="manhattan")
assert_allclose(idx, expected_idx)
assert_allclose(idx2, expected_idx)
assert_allclose(vals, expected_vals)
# sparse matrix case
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan")
idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan")
assert_allclose(idxsp, expected_idx)
assert_allclose(idxsp2, expected_idx)
assert_allclose(valssp, expected_vals)
# Non-euclidean Scipy distance (callable)
idx, vals = pairwise_distances_argmin_min(
X, Y, metric=minkowski, metric_kwargs={"p": 2}
)
assert_allclose(idx, expected_idx)
assert_allclose(vals, expected_vals)
# Non-euclidean Scipy distance (string)
idx, vals = pairwise_distances_argmin_min(
X, Y, metric="minkowski", metric_kwargs={"p": 2}
)
assert_allclose(idx, expected_idx)
assert_allclose(vals, expected_vals)
# Compare with naive implementation
rng = np.random.RandomState(0)
X = rng.randn(97, 149)
Y = rng.randn(111, 149)
dist = pairwise_distances(X, Y, metric="manhattan")
dist_orig_ind = dist.argmin(axis=0)
dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))]
dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min(
X, Y, axis=0, metric="manhattan"
)
assert_allclose(dist_orig_ind, dist_chunked_ind, rtol=1e-7)
assert_allclose(dist_orig_val, dist_chunked_val, rtol=1e-7)
# Changing the axis and permuting datasets must give the same results
argmin_0, dist_0 = pairwise_distances_argmin_min(X, Y, axis=0)
argmin_1, dist_1 = pairwise_distances_argmin_min(Y, X, axis=1)
assert_allclose(dist_0, dist_1)
assert_array_equal(argmin_0, argmin_1)
argmin_0, dist_0 = pairwise_distances_argmin_min(X, X, axis=0)
argmin_1, dist_1 = pairwise_distances_argmin_min(X, X, axis=1)
assert_allclose(dist_0, dist_1)
assert_array_equal(argmin_0, argmin_1)
# Changing the axis and permuting datasets must give the same results
argmin_0 = pairwise_distances_argmin(X, Y, axis=0)
argmin_1 = pairwise_distances_argmin(Y, X, axis=1)
assert_array_equal(argmin_0, argmin_1)
argmin_0 = pairwise_distances_argmin(X, X, axis=0)
argmin_1 = pairwise_distances_argmin(X, X, axis=1)
assert_array_equal(argmin_0, argmin_1)
# F-contiguous arrays must be supported and must return identical results.
argmin_C_contiguous = pairwise_distances_argmin(X, Y)
argmin_F_contiguous = pairwise_distances_argmin(
np.asfortranarray(X), np.asfortranarray(Y)
)
assert_array_equal(argmin_C_contiguous, argmin_F_contiguous)
def _reduce_func(dist, start):
return dist[:, :100]
def test_pairwise_distances_chunked_reduce(global_dtype):
rng = np.random.RandomState(0)
X = rng.random_sample((400, 4)).astype(global_dtype, copy=False)
# Reduced Euclidean distance
S = pairwise_distances(X)[:, :100]
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=_reduce_func, working_memory=2**-16
)
assert isinstance(S_chunks, GeneratorType)
S_chunks = list(S_chunks)
assert len(S_chunks) > 1
assert S_chunks[0].dtype == X.dtype
# atol is for diagonal where S is explicitly zeroed on the diagonal
assert_allclose(np.vstack(S_chunks), S, atol=1e-7)
def test_pairwise_distances_chunked_reduce_none(global_dtype):
# check that the reduce func is allowed to return None
rng = np.random.RandomState(0)
X = rng.random_sample((10, 4)).astype(global_dtype, copy=False)
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=lambda dist, start: None, working_memory=2**-16
)
assert isinstance(S_chunks, GeneratorType)
S_chunks = list(S_chunks)
assert len(S_chunks) > 1
assert all(chunk is None for chunk in S_chunks)
@pytest.mark.parametrize(
"good_reduce",
[
lambda D, start: list(D),
lambda D, start: np.array(D),
lambda D, start: (list(D), list(D)),
]
+ [
lambda D, start, scipy_csr_type=scipy_csr_type: scipy_csr_type(D)
for scipy_csr_type in CSR_CONTAINERS
]
+ [
lambda D, start, scipy_dok_type=scipy_dok_type: (
scipy_dok_type(D),
np.array(D),
list(D),
)
for scipy_dok_type in DOK_CONTAINERS
],
)
def test_pairwise_distances_chunked_reduce_valid(good_reduce):
X = np.arange(10).reshape(-1, 1)
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=good_reduce, working_memory=64
)
next(S_chunks)
@pytest.mark.parametrize(
("bad_reduce", "err_type", "message"),
[
(
lambda D, s: np.concatenate([D, D[-1:]]),
ValueError,
r"length 11\..* input: 10\.",
),
(
lambda D, s: (D, np.concatenate([D, D[-1:]])),
ValueError,
r"length \(10, 11\)\..* input: 10\.",
),
(lambda D, s: (D[:9], D), ValueError, r"length \(9, 10\)\..* input: 10\."),
(
lambda D, s: 7,
TypeError,
r"returned 7\. Expected sequence\(s\) of length 10\.",
),
(
lambda D, s: (7, 8),
TypeError,
r"returned \(7, 8\)\. Expected sequence\(s\) of length 10\.",
),
(
lambda D, s: (np.arange(10), 9),
TypeError,
r", 9\)\. Expected sequence\(s\) of length 10\.",
),
],
)
def test_pairwise_distances_chunked_reduce_invalid(
global_dtype, bad_reduce, err_type, message
):
X = np.arange(10).reshape(-1, 1).astype(global_dtype, copy=False)
S_chunks = pairwise_distances_chunked(
X, None, reduce_func=bad_reduce, working_memory=64
)
with pytest.raises(err_type, match=message):
next(S_chunks)
def check_pairwise_distances_chunked(X, Y, working_memory, metric="euclidean"):
gen = pairwise_distances_chunked(X, Y, working_memory=working_memory, metric=metric)
assert isinstance(gen, GeneratorType)
blockwise_distances = list(gen)
Y = X if Y is None else Y
min_block_mib = len(Y) * 8 * 2**-20
for block in blockwise_distances:
memory_used = block.nbytes
assert memory_used <= max(working_memory, min_block_mib) * 2**20
blockwise_distances = np.vstack(blockwise_distances)
S = pairwise_distances(X, Y, metric=metric)
assert_allclose(blockwise_distances, S, atol=1e-7)
@pytest.mark.parametrize("metric", ("euclidean", "l2", "sqeuclidean"))
def test_pairwise_distances_chunked_diagonal(metric, global_dtype):
rng = np.random.RandomState(0)
X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False)
chunks = list(pairwise_distances_chunked(X, working_memory=1, metric=metric))
assert len(chunks) > 1
assert_allclose(np.diag(np.vstack(chunks)), 0, rtol=1e-10)
@pytest.mark.parametrize("metric", ("euclidean", "l2", "sqeuclidean"))
def test_parallel_pairwise_distances_diagonal(metric, global_dtype):
rng = np.random.RandomState(0)
X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False)
distances = pairwise_distances(X, metric=metric, n_jobs=2)
assert_allclose(np.diag(distances), 0, atol=1e-10)
@ignore_warnings
def test_pairwise_distances_chunked(global_dtype):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((200, 4)).astype(global_dtype, copy=False)
check_pairwise_distances_chunked(X, None, working_memory=1, metric="euclidean")
# Test small amounts of memory
for power in range(-16, 0):
check_pairwise_distances_chunked(
X, None, working_memory=2**power, metric="euclidean"
)
# X as list
check_pairwise_distances_chunked(
X.tolist(), None, working_memory=1, metric="euclidean"
)
# Euclidean distance, with Y != X.
Y = rng.random_sample((100, 4)).astype(global_dtype, copy=False)
check_pairwise_distances_chunked(X, Y, working_memory=1, metric="euclidean")
check_pairwise_distances_chunked(
X.tolist(), Y.tolist(), working_memory=1, metric="euclidean"
)
# absurdly large working_memory
check_pairwise_distances_chunked(X, Y, working_memory=10000, metric="euclidean")
# "cityblock" uses scikit-learn metric, cityblock (function) is
# scipy.spatial.
check_pairwise_distances_chunked(X, Y, working_memory=1, metric="cityblock")
# Test precomputed returns all at once
D = pairwise_distances(X)
gen = pairwise_distances_chunked(D, working_memory=2**-16, metric="precomputed")
assert isinstance(gen, GeneratorType)
assert next(gen) is D
with pytest.raises(StopIteration):
next(gen)
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_known_result(x_array_constr, y_array_constr):
# Check the pairwise Euclidean distances computation on known result
X = x_array_constr([[0]])
Y = y_array_constr([[1], [2]])
D = euclidean_distances(X, Y)
assert_allclose(D, [[1.0, 2.0]])
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_with_norms(global_dtype, y_array_constr):
# check that we still get the right answers with {X,Y}_norm_squared
# and that we get a wrong answer with wrong {X,Y}_norm_squared
rng = np.random.RandomState(0)
X = rng.random_sample((10, 10)).astype(global_dtype, copy=False)
Y = rng.random_sample((20, 10)).astype(global_dtype, copy=False)
# norms will only be used if their dtype is float64
X_norm_sq = (X.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1)
Y_norm_sq = (Y.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1)
Y = y_array_constr(Y)
D1 = euclidean_distances(X, Y)
D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq)
assert_allclose(D2, D1)
assert_allclose(D3, D1)
assert_allclose(D4, D1)
# check we get the wrong answer with wrong {X,Y}_norm_squared
wrong_D = euclidean_distances(
X,
Y,
X_norm_squared=np.zeros_like(X_norm_sq),
Y_norm_squared=np.zeros_like(Y_norm_sq),
)
with pytest.raises(AssertionError):
assert_allclose(wrong_D, D1)
@pytest.mark.parametrize("symmetric", [True, False])
def test_euclidean_distances_float32_norms(global_random_seed, symmetric):
# Non-regression test for #27621
rng = np.random.RandomState(global_random_seed)
X = rng.random_sample((10, 10))
Y = X if symmetric else rng.random_sample((20, 10))
X_norm_sq = (X.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1)
Y_norm_sq = (Y.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1)
D1 = euclidean_distances(X, Y)
D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq)
assert_allclose(D2, D1)
assert_allclose(D3, D1)
assert_allclose(D4, D1)
def test_euclidean_distances_norm_shapes():
# Check all accepted shapes for the norms or appropriate error messages.
rng = np.random.RandomState(0)
X = rng.random_sample((10, 10))
Y = rng.random_sample((20, 10))
X_norm_squared = (X**2).sum(axis=1)
Y_norm_squared = (Y**2).sum(axis=1)
D1 = euclidean_distances(
X, Y, X_norm_squared=X_norm_squared, Y_norm_squared=Y_norm_squared
)
D2 = euclidean_distances(
X,
Y,
X_norm_squared=X_norm_squared.reshape(-1, 1),
Y_norm_squared=Y_norm_squared.reshape(-1, 1),
)
D3 = euclidean_distances(
X,
Y,
X_norm_squared=X_norm_squared.reshape(1, -1),
Y_norm_squared=Y_norm_squared.reshape(1, -1),
)
assert_allclose(D2, D1)
assert_allclose(D3, D1)
with pytest.raises(ValueError, match="Incompatible dimensions for X"):
euclidean_distances(X, Y, X_norm_squared=X_norm_squared[:5])
with pytest.raises(ValueError, match="Incompatible dimensions for Y"):
euclidean_distances(X, Y, Y_norm_squared=Y_norm_squared[:5])
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances(global_dtype, x_array_constr, y_array_constr):
# check that euclidean distances gives same result as scipy cdist
# when X and Y != X are provided
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
X[X < 0.8] = 0
Y = rng.random_sample((10, 10)).astype(global_dtype, copy=False)
Y[Y < 0.8] = 0
expected = cdist(X, Y)
X = x_array_constr(X)
Y = y_array_constr(Y)
distances = euclidean_distances(X, Y)
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
assert distances.dtype == global_dtype
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_sym(global_dtype, x_array_constr):
# check that euclidean distances gives same result as scipy pdist
# when only X is provided
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
X[X < 0.8] = 0
expected = squareform(pdist(X))
X = x_array_constr(X)
distances = euclidean_distances(X)
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
assert distances.dtype == global_dtype
@pytest.mark.parametrize("batch_size", [None, 5, 7, 101])
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
@pytest.mark.parametrize(
"y_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_upcast(batch_size, x_array_constr, y_array_constr):
# check batches handling when Y != X (#13910)
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(np.float32)
X[X < 0.8] = 0
Y = rng.random_sample((10, 10)).astype(np.float32)
Y[Y < 0.8] = 0
expected = cdist(X, Y)
X = x_array_constr(X)
Y = y_array_constr(Y)
distances = _euclidean_distances_upcast(X, Y=Y, batch_size=batch_size)
distances = np.sqrt(np.maximum(distances, 0))
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
@pytest.mark.parametrize("batch_size", [None, 5, 7, 101])
@pytest.mark.parametrize(
"x_array_constr",
[np.array] + CSR_CONTAINERS,
ids=["dense"] + [container.__name__ for container in CSR_CONTAINERS],
)
def test_euclidean_distances_upcast_sym(batch_size, x_array_constr):
# check batches handling when X is Y (#13910)
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(np.float32)
X[X < 0.8] = 0
expected = squareform(pdist(X))
X = x_array_constr(X)
distances = _euclidean_distances_upcast(X, Y=X, batch_size=batch_size)
distances = np.sqrt(np.maximum(distances, 0))
# the default rtol=1e-7 is too close to the float32 precision
# and fails due to rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
@pytest.mark.parametrize(
"dtype, eps, rtol",
[
(np.float32, 1e-4, 1e-5),
pytest.param(
np.float64,
1e-8,
0.99,
marks=pytest.mark.xfail(reason="failing due to lack of precision"),
),
],
)
@pytest.mark.parametrize("dim", [1, 1000000])
def test_euclidean_distances_extreme_values(dtype, eps, rtol, dim):
# check that euclidean distances is correct with float32 input thanks to
# upcasting. On float64 there are still precision issues.
X = np.array([[1.0] * dim], dtype=dtype)
Y = np.array([[1.0 + eps] * dim], dtype=dtype)
distances = euclidean_distances(X, Y)
expected = cdist(X, Y)
assert_allclose(distances, expected, rtol=1e-5)
@pytest.mark.parametrize("squared", [True, False])
def test_nan_euclidean_distances_equal_to_euclidean_distance(squared):
# with no nan values
rng = np.random.RandomState(1337)
X = rng.randn(3, 4)
Y = rng.randn(4, 4)
normal_distance = euclidean_distances(X, Y=Y, squared=squared)
nan_distance = nan_euclidean_distances(X, Y=Y, squared=squared)
assert_allclose(normal_distance, nan_distance)
@pytest.mark.parametrize("X", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]])])
@pytest.mark.parametrize("Y", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]]), None])
def test_nan_euclidean_distances_infinite_values(X, Y):
with pytest.raises(ValueError) as excinfo:
nan_euclidean_distances(X, Y=Y)
exp_msg = "Input contains infinity or a value too large for dtype('float64')."
assert exp_msg == str(excinfo.value)
@pytest.mark.parametrize(
"X, X_diag, missing_value",
[
(np.array([[0, 1], [1, 0]]), np.sqrt(2), np.nan),
(np.array([[0, 1], [1, np.nan]]), np.sqrt(2), np.nan),
(np.array([[np.nan, 1], [1, np.nan]]), np.nan, np.nan),
(np.array([[np.nan, 1], [np.nan, 0]]), np.sqrt(2), np.nan),
(np.array([[0, np.nan], [1, np.nan]]), np.sqrt(2), np.nan),
(np.array([[0, 1], [1, 0]]), np.sqrt(2), -1),
(np.array([[0, 1], [1, -1]]), np.sqrt(2), -1),
(np.array([[-1, 1], [1, -1]]), np.nan, -1),
(np.array([[-1, 1], [-1, 0]]), np.sqrt(2), -1),
(np.array([[0, -1], [1, -1]]), np.sqrt(2), -1),
],
)
def test_nan_euclidean_distances_2x2(X, X_diag, missing_value):
exp_dist = np.array([[0.0, X_diag], [X_diag, 0]])
dist = nan_euclidean_distances(X, missing_values=missing_value)
assert_allclose(exp_dist, dist)
dist_sq = nan_euclidean_distances(X, squared=True, missing_values=missing_value)
assert_allclose(exp_dist**2, dist_sq)
dist_two = nan_euclidean_distances(X, X, missing_values=missing_value)
assert_allclose(exp_dist, dist_two)
dist_two_copy = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
assert_allclose(exp_dist, dist_two_copy)
@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_complete_nan(missing_value):
X = np.array([[missing_value, missing_value], [0, 1]])
exp_dist = np.array([[np.nan, np.nan], [np.nan, 0]])
dist = nan_euclidean_distances(X, missing_values=missing_value)
assert_allclose(exp_dist, dist)
dist = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
assert_allclose(exp_dist, dist)
@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_not_trival(missing_value):
X = np.array(
[
[1.0, missing_value, 3.0, 4.0, 2.0],
[missing_value, 4.0, 6.0, 1.0, missing_value],
[3.0, missing_value, missing_value, missing_value, 1.0],
]
)
Y = np.array(
[
[missing_value, 7.0, 7.0, missing_value, 2.0],
[missing_value, missing_value, 5.0, 4.0, 7.0],
[missing_value, missing_value, missing_value, 4.0, 5.0],
]
)
# Check for symmetry
D1 = nan_euclidean_distances(X, Y, missing_values=missing_value)
D2 = nan_euclidean_distances(Y, X, missing_values=missing_value)
assert_almost_equal(D1, D2.T)
# Check with explicit formula and squared=True
assert_allclose(
nan_euclidean_distances(
X[:1], Y[:1], squared=True, missing_values=missing_value
),
[[5.0 / 2.0 * ((7 - 3) ** 2 + (2 - 2) ** 2)]],
)
# Check with explicit formula and squared=False
assert_allclose(
nan_euclidean_distances(
X[1:2], Y[1:2], squared=False, missing_values=missing_value
),
[[np.sqrt(5.0 / 2.0 * ((6 - 5) ** 2 + (1 - 4) ** 2))]],
)
# Check when Y = X is explicitly passed
D3 = nan_euclidean_distances(X, missing_values=missing_value)
D4 = nan_euclidean_distances(X, X, missing_values=missing_value)
D5 = nan_euclidean_distances(X, X.copy(), missing_values=missing_value)
assert_allclose(D3, D4)
assert_allclose(D4, D5)
# Check copy = True against copy = False
D6 = nan_euclidean_distances(X, Y, copy=True)
D7 = nan_euclidean_distances(X, Y, copy=False)
assert_allclose(D6, D7)
@pytest.mark.parametrize("missing_value", [np.nan, -1])
def test_nan_euclidean_distances_one_feature_match_positive(missing_value):
# First feature is the only feature that is non-nan and in both
# samples. The result of `nan_euclidean_distances` with squared=True
# should be non-negative. The non-squared version should all be close to 0.
X = np.array(
[
[-122.27, 648.0, missing_value, 37.85],
[-122.27, missing_value, 2.34701493, missing_value],
]
)
dist_squared = nan_euclidean_distances(
X, missing_values=missing_value, squared=True
)
assert np.all(dist_squared >= 0)
dist = nan_euclidean_distances(X, missing_values=missing_value, squared=False)
assert_allclose(dist, 0.0)
def test_cosine_distances():
# Check the pairwise Cosine distances computation
rng = np.random.RandomState(1337)
x = np.abs(rng.rand(910))
XA = np.vstack([x, x])
D = cosine_distances(XA)
assert_allclose(D, [[0.0, 0.0], [0.0, 0.0]], atol=1e-10)
# check that all elements are in [0, 2]
assert np.all(D >= 0.0)
assert np.all(D <= 2.0)
# check that diagonal elements are equal to 0
assert_allclose(D[np.diag_indices_from(D)], [0.0, 0.0])
XB = np.vstack([x, -x])
D2 = cosine_distances(XB)
# check that all elements are in [0, 2]
assert np.all(D2 >= 0.0)
assert np.all(D2 <= 2.0)
# check that diagonal elements are equal to 0 and non diagonal to 2
assert_allclose(D2, [[0.0, 2.0], [2.0, 0.0]])
# check large random matrix
X = np.abs(rng.rand(1000, 5000))
D = cosine_distances(X)
# check that diagonal elements are equal to 0
assert_allclose(D[np.diag_indices_from(D)], [0.0] * D.shape[0])
assert np.all(D >= 0.0)
assert np.all(D <= 2.0)
def test_haversine_distances():
# Check haversine distance with distances computation
def slow_haversine_distances(x, y):
diff_lat = y[0] - x[0]
diff_lon = y[1] - x[1]
a = np.sin(diff_lat / 2) ** 2 + (
np.cos(x[0]) * np.cos(y[0]) * np.sin(diff_lon / 2) ** 2
)
c = 2 * np.arcsin(np.sqrt(a))
return c
rng = np.random.RandomState(0)
X = rng.random_sample((5, 2))
Y = rng.random_sample((10, 2))
D1 = np.array([[slow_haversine_distances(x, y) for y in Y] for x in X])
D2 = haversine_distances(X, Y)
assert_allclose(D1, D2)
# Test haversine distance does not accept X where n_feature != 2
X = rng.random_sample((10, 3))
err_msg = "Haversine distance only valid in 2 dimensions"
with pytest.raises(ValueError, match=err_msg):
haversine_distances(X)
# Paired distances
def test_paired_euclidean_distances():
# Check the paired Euclidean distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_euclidean_distances(X, Y)
assert_allclose(D, [1.0, 2.0])
def test_paired_manhattan_distances():
# Check the paired manhattan distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_manhattan_distances(X, Y)
assert_allclose(D, [1.0, 2.0])
def test_paired_cosine_distances():
# Check the paired manhattan distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_cosine_distances(X, Y)
assert_allclose(D, [0.5, 0.5])
def test_chi_square_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((10, 4))
K_add = additive_chi2_kernel(X, Y)
gamma = 0.1
K = chi2_kernel(X, Y, gamma=gamma)
assert K.dtype == float
for i, x in enumerate(X):
for j, y in enumerate(Y):
chi2 = -np.sum((x - y) ** 2 / (x + y))
chi2_exp = np.exp(gamma * chi2)
assert_almost_equal(K_add[i, j], chi2)
assert_almost_equal(K[i, j], chi2_exp)
# check diagonal is ones for data with itself
K = chi2_kernel(Y)
assert_array_equal(np.diag(K), 1)
# check off-diagonal is < 1 but > 0:
assert np.all(K > 0)
assert np.all(K - np.diag(np.diag(K)) < 1)
# check that float32 is preserved
X = rng.random_sample((5, 4)).astype(np.float32)
Y = rng.random_sample((10, 4)).astype(np.float32)
K = chi2_kernel(X, Y)
assert K.dtype == np.float32
# check integer type gets converted,
# check that zeros are handled
X = rng.random_sample((10, 4)).astype(np.int32)
K = chi2_kernel(X, X)
assert np.isfinite(K).all()
assert K.dtype == float
# check that kernel of similar things is greater than dissimilar ones
X = [[0.3, 0.7], [1.0, 0]]
Y = [[0, 1], [0.9, 0.1]]
K = chi2_kernel(X, Y)
assert K[0, 0] > K[0, 1]
assert K[1, 1] > K[1, 0]
# test negative input
with pytest.raises(ValueError):
chi2_kernel([[0, -1]])
with pytest.raises(ValueError):
chi2_kernel([[0, -1]], [[-1, -1]])
with pytest.raises(ValueError):
chi2_kernel([[0, 1]], [[-1, -1]])
# different n_features in X and Y
with pytest.raises(ValueError):
chi2_kernel([[0, 1]], [[0.2, 0.2, 0.6]])
@pytest.mark.parametrize(
"kernel",
(
linear_kernel,
polynomial_kernel,
rbf_kernel,
laplacian_kernel,
sigmoid_kernel,
cosine_similarity,
),
)
def test_kernel_symmetry(kernel):
# Valid kernels should be symmetric
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = kernel(X, X)
assert_allclose(K, K.T, 15)
@pytest.mark.parametrize(
"kernel",
(
linear_kernel,
polynomial_kernel,
rbf_kernel,
laplacian_kernel,
sigmoid_kernel,
cosine_similarity,
),
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_kernel_sparse(kernel, csr_container):
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
X_sparse = csr_container(X)
K = kernel(X, X)
K2 = kernel(X_sparse, X_sparse)
assert_allclose(K, K2)
def test_linear_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = linear_kernel(X, X)
# the diagonal elements of a linear kernel are their squared norm
assert_allclose(K.flat[::6], [linalg.norm(x) ** 2 for x in X])
def test_rbf_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = rbf_kernel(X, X)
# the diagonal elements of a rbf kernel are 1
assert_allclose(K.flat[::6], np.ones(5))
def test_laplacian_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = laplacian_kernel(X, X)
# the diagonal elements of a laplacian kernel are 1
assert_allclose(np.diag(K), np.ones(5))
# off-diagonal elements are < 1 but > 0:
assert np.all(K > 0)
assert np.all(K - np.diag(np.diag(K)) < 1)
@pytest.mark.parametrize(
"metric, pairwise_func",
[("linear", linear_kernel), ("cosine", cosine_similarity)],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_pairwise_similarity_sparse_output(metric, pairwise_func, csr_container):
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((3, 4))
Xcsr = csr_container(X)
Ycsr = csr_container(Y)
# should be sparse
K1 = pairwise_func(Xcsr, Ycsr, dense_output=False)
assert issparse(K1)
# should be dense, and equal to K1
K2 = pairwise_func(X, Y, dense_output=True)
assert not issparse(K2)
assert_allclose(K1.toarray(), K2)
# show the kernel output equal to the sparse.toarray()
K3 = pairwise_kernels(X, Y=Y, metric=metric)
assert_allclose(K1.toarray(), K3)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_cosine_similarity(csr_container):
# Test the cosine_similarity.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((3, 4))
Xcsr = csr_container(X)
Ycsr = csr_container(Y)
for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)):
# Test that the cosine is kernel is equal to a linear kernel when data
# has been previously normalized by L2-norm.
K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
X_ = normalize(X_)
if Y_ is not None:
Y_ = normalize(Y_)
K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
assert_allclose(K1, K2)
def test_check_dense_matrices():
# Ensure that pairwise array check works for dense matrices.
# Check that if XB is None, XB is returned as reference to XA
XA = np.resize(np.arange(40), (5, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert XA_checked is XB_checked
assert_array_equal(XA, XA_checked)
def test_check_XB_returned():
# Ensure that if XA and XB are given correctly, they return as equal.
# Check that if XB is not None, it is returned equal.
# Note that the second dimension of XB is the same as XA.
XA = np.resize(np.arange(40), (5, 8))
XB = np.resize(np.arange(32), (4, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert_array_equal(XA, XA_checked)
assert_array_equal(XB, XB_checked)
XB = np.resize(np.arange(40), (5, 8))
XA_checked, XB_checked = check_paired_arrays(XA, XB)
assert_array_equal(XA, XA_checked)
assert_array_equal(XB, XB_checked)
def test_check_different_dimensions():
# Ensure an error is raised if the dimensions are different.
XA = np.resize(np.arange(45), (5, 9))
XB = np.resize(np.arange(32), (4, 8))
with pytest.raises(ValueError):
check_pairwise_arrays(XA, XB)
XB = np.resize(np.arange(4 * 9), (4, 9))
with pytest.raises(ValueError):
check_paired_arrays(XA, XB)
def test_check_invalid_dimensions():
# Ensure an error is raised on 1D input arrays.
# The modified tests are not 1D. In the old test, the array was internally
# converted to 2D anyways
XA = np.arange(45).reshape(9, 5)
XB = np.arange(32).reshape(4, 8)
with pytest.raises(ValueError):
check_pairwise_arrays(XA, XB)
XA = np.arange(45).reshape(9, 5)
XB = np.arange(32).reshape(4, 8)
with pytest.raises(ValueError):
check_pairwise_arrays(XA, XB)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_check_sparse_arrays(csr_container):
# Ensures that checks return valid sparse matrices.
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_sparse = csr_container(XA)
XB = rng.random_sample((5, 4))
XB_sparse = csr_container(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse)
# compare their difference because testing csr matrices for
# equality with '==' does not work as expected.
assert issparse(XA_checked)
assert abs(XA_sparse - XA_checked).sum() == 0
assert issparse(XB_checked)
assert abs(XB_sparse - XB_checked).sum() == 0
XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse)
assert issparse(XA_checked)
assert abs(XA_sparse - XA_checked).sum() == 0
assert issparse(XA_2_checked)
assert abs(XA_2_checked - XA_checked).sum() == 0
def tuplify(X):
# Turns a numpy matrix (any n-dimensional array) into tuples.
s = X.shape
if len(s) > 1:
# Tuplify each sub-array in the input.
return tuple(tuplify(row) for row in X)
else:
# Single dimension input, just return tuple of contents.
return tuple(r for r in X)
def test_check_tuple_input():
# Ensures that checks return valid tuples.
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_tuples = tuplify(XA)
XB = rng.random_sample((5, 4))
XB_tuples = tuplify(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples)
assert_array_equal(XA_tuples, XA_checked)
assert_array_equal(XB_tuples, XB_checked)
def test_check_preserve_type():
# Ensures that type float32 is preserved.
XA = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XB = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert XA_checked.dtype == np.float32
# both float32
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert XA_checked.dtype == np.float32
assert XB_checked.dtype == np.float32
# mismatched A
XA_checked, XB_checked = check_pairwise_arrays(XA.astype(float), XB)
assert XA_checked.dtype == float
assert XB_checked.dtype == float
# mismatched B
XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(float))
assert XA_checked.dtype == float
assert XB_checked.dtype == float
@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
@pytest.mark.parametrize(
"dist_function", [pairwise_distances, pairwise_distances_chunked]
)
def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function):
# check that pairwise_distances give the same result in sequential and
# parallel, when metric has data-derived parameters.
with config_context(working_memory=0.1): # to have more than 1 chunk
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10))
expected_dist = squareform(pdist(X, metric=metric))
dist = np.vstack(tuple(dist_function(X, metric=metric, n_jobs=n_jobs)))
assert_allclose(dist, expected_dist)
@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
def test_pairwise_distances_data_derived_params_error(metric):
# check that pairwise_distances raises an error when Y is passed but
# metric has data-derived params that are not provided by the user.
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10))
Y = rng.random_sample((100, 10))
with pytest.raises(
ValueError,
match=rf"The '(V|VI)' parameter is required for the " rf"{metric} metric",
):
pairwise_distances(X, Y, metric=metric)
@pytest.mark.parametrize(
"metric",
[
"braycurtis",
"canberra",
"chebyshev",
"correlation",
"hamming",
"mahalanobis",
"minkowski",
"seuclidean",
"sqeuclidean",
"cityblock",
"cosine",
"euclidean",
],
)
@pytest.mark.parametrize("y_is_x", [True, False], ids=["Y is X", "Y is not X"])
def test_numeric_pairwise_distances_datatypes(metric, global_dtype, y_is_x):
# Check that pairwise distances gives the same result as pdist and cdist
# regardless of input datatype when using any scipy metric for comparing
# numeric vectors
#
# This test is necessary because pairwise_distances used to throw an
# error when using metric='seuclidean' and the input data was not
# of type np.float64 (#15730)
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
params = {}
if y_is_x:
Y = X
expected_dist = squareform(pdist(X, metric=metric))
else:
Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False)
expected_dist = cdist(X, Y, metric=metric)
# precompute parameters for seuclidean & mahalanobis when x is not y
if metric == "seuclidean":
params = {"V": np.var(np.vstack([X, Y]), axis=0, ddof=1, dtype=np.float64)}
elif metric == "mahalanobis":
params = {"VI": np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T}
dist = pairwise_distances(X, Y, metric=metric, **params)
assert_allclose(dist, expected_dist)
@pytest.mark.parametrize(
"X,Y,expected_distance",
[
(
["a", "ab", "abc"],
None,
[[0.0, 1.0, 2.0], [1.0, 0.0, 1.0], [2.0, 1.0, 0.0]],
),
(
["a", "ab", "abc"],
["a", "ab"],
[[0.0, 1.0], [1.0, 0.0], [2.0, 1.0]],
),
],
)
def test_pairwise_dist_custom_metric_for_string(X, Y, expected_distance):
"""Check pairwise_distances with lists of strings as input."""
def dummy_string_similarity(x, y):
return np.abs(len(x) - len(y))
actual_distance = pairwise_distances(X=X, Y=Y, metric=dummy_string_similarity)
assert_allclose(actual_distance, expected_distance)
def test_pairwise_dist_custom_metric_for_bool():
"""Check that pairwise_distances does not convert boolean input to float
when using a custom metric.
"""
def dummy_bool_dist(v1, v2):
# dummy distance func using `&` and thus relying on the input data being boolean
return 1 - (v1 & v2).sum() / (v1 | v2).sum()
X = np.array([[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]], dtype=bool)
expected_distance = np.array(
[
[0.0, 0.5, 0.75],
[0.5, 0.0, 0.5],
[0.75, 0.5, 0.0],
]
)
actual_distance = pairwise_distances(X=X, metric=dummy_bool_dist)
assert_allclose(actual_distance, expected_distance)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_manhattan_readonly_dataset(csr_container):
# Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/7981
matrices1 = [csr_container(np.ones((5, 5)))]
matrices2 = [csr_container(np.ones((5, 5)))]
# Joblib memory maps datasets which makes them read-only.
# The following call was reporting as failing in #7981, but this must pass.
Parallel(n_jobs=2, max_nbytes=0)(
delayed(manhattan_distances)(m1, m2) for m1, m2 in zip(matrices1, matrices2)
)