3RNN/Lib/site-packages/sklearn/preprocessing/tests/test_label.py
2024-05-26 19:49:15 +02:00

700 lines
23 KiB
Python

import numpy as np
import pytest
from scipy.sparse import issparse
from sklearn import datasets
from sklearn.preprocessing._label import (
LabelBinarizer,
LabelEncoder,
MultiLabelBinarizer,
_inverse_binarize_multiclass,
_inverse_binarize_thresholding,
label_binarize,
)
from sklearn.utils._testing import assert_array_equal, ignore_warnings
from sklearn.utils.fixes import (
COO_CONTAINERS,
CSC_CONTAINERS,
CSR_CONTAINERS,
DOK_CONTAINERS,
LIL_CONTAINERS,
)
from sklearn.utils.multiclass import type_of_target
from sklearn.utils.validation import _to_object_array
iris = datasets.load_iris()
def toarray(a):
if hasattr(a, "toarray"):
a = a.toarray()
return a
def test_label_binarizer():
# one-class case defaults to negative label
# For dense case:
inp = ["pos", "pos", "pos", "pos"]
lb = LabelBinarizer(sparse_output=False)
expected = np.array([[0, 0, 0, 0]]).T
got = lb.fit_transform(inp)
assert_array_equal(lb.classes_, ["pos"])
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
# For sparse case:
lb = LabelBinarizer(sparse_output=True)
got = lb.fit_transform(inp)
assert issparse(got)
assert_array_equal(lb.classes_, ["pos"])
assert_array_equal(expected, got.toarray())
assert_array_equal(lb.inverse_transform(got.toarray()), inp)
lb = LabelBinarizer(sparse_output=False)
# two-class case
inp = ["neg", "pos", "pos", "neg"]
expected = np.array([[0, 1, 1, 0]]).T
got = lb.fit_transform(inp)
assert_array_equal(lb.classes_, ["neg", "pos"])
assert_array_equal(expected, got)
to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
assert_array_equal(lb.inverse_transform(to_invert), inp)
# multi-class case
inp = ["spam", "ham", "eggs", "ham", "0"]
expected = np.array(
[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]
)
got = lb.fit_transform(inp)
assert_array_equal(lb.classes_, ["0", "eggs", "ham", "spam"])
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
def test_label_binarizer_unseen_labels():
lb = LabelBinarizer()
expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
got = lb.fit_transform(["b", "d", "e"])
assert_array_equal(expected, got)
expected = np.array(
[[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]
)
got = lb.transform(["a", "b", "c", "d", "e", "f"])
assert_array_equal(expected, got)
def test_label_binarizer_set_label_encoding():
lb = LabelBinarizer(neg_label=-2, pos_label=0)
# two-class case with pos_label=0
inp = np.array([0, 1, 1, 0])
expected = np.array([[-2, 0, 0, -2]]).T
got = lb.fit_transform(inp)
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
lb = LabelBinarizer(neg_label=-2, pos_label=2)
# multi-class case
inp = np.array([3, 2, 1, 2, 0])
expected = np.array(
[
[-2, -2, -2, +2],
[-2, -2, +2, -2],
[-2, +2, -2, -2],
[-2, -2, +2, -2],
[+2, -2, -2, -2],
]
)
got = lb.fit_transform(inp)
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
@pytest.mark.parametrize("unique_first", [True, False])
def test_label_binarizer_pandas_nullable(dtype, unique_first):
"""Checks that LabelBinarizer works with pandas nullable dtypes.
Non-regression test for gh-25637.
"""
pd = pytest.importorskip("pandas")
y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype)
if unique_first:
# Calling unique creates a pandas array which has a different interface
# compared to a pandas Series. Specifically, pandas arrays do not have "iloc".
y_true = y_true.unique()
lb = LabelBinarizer().fit(y_true)
y_out = lb.transform([1, 0])
assert_array_equal(y_out, [[1], [0]])
@ignore_warnings
def test_label_binarizer_errors():
# Check that invalid arguments yield ValueError
one_class = np.array([0, 0, 0, 0])
lb = LabelBinarizer().fit(one_class)
multi_label = [(2, 3), (0,), (0, 2)]
err_msg = "You appear to be using a legacy multi-label data representation."
with pytest.raises(ValueError, match=err_msg):
lb.transform(multi_label)
lb = LabelBinarizer()
err_msg = "This LabelBinarizer instance is not fitted yet"
with pytest.raises(ValueError, match=err_msg):
lb.transform([])
with pytest.raises(ValueError, match=err_msg):
lb.inverse_transform([])
input_labels = [0, 1, 0, 1]
err_msg = "neg_label=2 must be strictly less than pos_label=1."
lb = LabelBinarizer(neg_label=2, pos_label=1)
with pytest.raises(ValueError, match=err_msg):
lb.fit(input_labels)
err_msg = "neg_label=2 must be strictly less than pos_label=2."
lb = LabelBinarizer(neg_label=2, pos_label=2)
with pytest.raises(ValueError, match=err_msg):
lb.fit(input_labels)
err_msg = (
"Sparse binarization is only supported with non zero pos_label and zero "
"neg_label, got pos_label=2 and neg_label=1"
)
lb = LabelBinarizer(neg_label=1, pos_label=2, sparse_output=True)
with pytest.raises(ValueError, match=err_msg):
lb.fit(input_labels)
# Sequence of seq type should raise ValueError
y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]]
err_msg = "You appear to be using a legacy multi-label data representation"
with pytest.raises(ValueError, match=err_msg):
LabelBinarizer().fit_transform(y_seq_of_seqs)
# Fail on the dimension of 'binary'
err_msg = "output_type='binary', but y.shape"
with pytest.raises(ValueError, match=err_msg):
_inverse_binarize_thresholding(
y=np.array([[1, 2, 3], [2, 1, 3]]),
output_type="binary",
classes=[1, 2, 3],
threshold=0,
)
# Fail on multioutput data
err_msg = "Multioutput target data is not supported with label binarization"
with pytest.raises(ValueError, match=err_msg):
LabelBinarizer().fit(np.array([[1, 3], [2, 1]]))
with pytest.raises(ValueError, match=err_msg):
label_binarize(np.array([[1, 3], [2, 1]]), classes=[1, 2, 3])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_label_binarizer_sparse_errors(csr_container):
# Fail on y_type
err_msg = "foo format is not supported"
with pytest.raises(ValueError, match=err_msg):
_inverse_binarize_thresholding(
y=csr_container([[1, 2], [2, 1]]),
output_type="foo",
classes=[1, 2],
threshold=0,
)
# Fail on the number of classes
err_msg = "The number of class is not equal to the number of dimension of y."
with pytest.raises(ValueError, match=err_msg):
_inverse_binarize_thresholding(
y=csr_container([[1, 2], [2, 1]]),
output_type="foo",
classes=[1, 2, 3],
threshold=0,
)
@pytest.mark.parametrize(
"values, classes, unknown",
[
(
np.array([2, 1, 3, 1, 3], dtype="int64"),
np.array([1, 2, 3], dtype="int64"),
np.array([4], dtype="int64"),
),
(
np.array(["b", "a", "c", "a", "c"], dtype=object),
np.array(["a", "b", "c"], dtype=object),
np.array(["d"], dtype=object),
),
(
np.array(["b", "a", "c", "a", "c"]),
np.array(["a", "b", "c"]),
np.array(["d"]),
),
],
ids=["int64", "object", "str"],
)
def test_label_encoder(values, classes, unknown):
# Test LabelEncoder's transform, fit_transform and
# inverse_transform methods
le = LabelEncoder()
le.fit(values)
assert_array_equal(le.classes_, classes)
assert_array_equal(le.transform(values), [1, 0, 2, 0, 2])
assert_array_equal(le.inverse_transform([1, 0, 2, 0, 2]), values)
le = LabelEncoder()
ret = le.fit_transform(values)
assert_array_equal(ret, [1, 0, 2, 0, 2])
with pytest.raises(ValueError, match="unseen labels"):
le.transform(unknown)
def test_label_encoder_negative_ints():
le = LabelEncoder()
le.fit([1, 1, 4, 5, -1, 0])
assert_array_equal(le.classes_, [-1, 0, 1, 4, 5])
assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0])
assert_array_equal(
le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]
)
with pytest.raises(ValueError):
le.transform([0, 6])
@pytest.mark.parametrize("dtype", ["str", "object"])
def test_label_encoder_str_bad_shape(dtype):
le = LabelEncoder()
le.fit(np.array(["apple", "orange"], dtype=dtype))
msg = "should be a 1d array"
with pytest.raises(ValueError, match=msg):
le.transform("apple")
def test_label_encoder_errors():
# Check that invalid arguments yield ValueError
le = LabelEncoder()
with pytest.raises(ValueError):
le.transform([])
with pytest.raises(ValueError):
le.inverse_transform([])
# Fail on unseen labels
le = LabelEncoder()
le.fit([1, 2, 3, -1, 1])
msg = "contains previously unseen labels"
with pytest.raises(ValueError, match=msg):
le.inverse_transform([-2])
with pytest.raises(ValueError, match=msg):
le.inverse_transform([-2, -3, -4])
# Fail on inverse_transform("")
msg = r"should be a 1d array.+shape \(\)"
with pytest.raises(ValueError, match=msg):
le.inverse_transform("")
@pytest.mark.parametrize(
"values",
[
np.array([2, 1, 3, 1, 3], dtype="int64"),
np.array(["b", "a", "c", "a", "c"], dtype=object),
np.array(["b", "a", "c", "a", "c"]),
],
ids=["int64", "object", "str"],
)
def test_label_encoder_empty_array(values):
le = LabelEncoder()
le.fit(values)
# test empty transform
transformed = le.transform([])
assert_array_equal(np.array([]), transformed)
# test empty inverse transform
inverse_transformed = le.inverse_transform([])
assert_array_equal(np.array([]), inverse_transformed)
def test_sparse_output_multilabel_binarizer():
# test input as iterable of iterables
inputs = [
lambda: [(2, 3), (1,), (1, 2)],
lambda: ({2, 3}, {1}, {1, 2}),
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
]
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
inverse = inputs[0]()
for sparse_output in [True, False]:
for inp in inputs:
# With fit_transform
mlb = MultiLabelBinarizer(sparse_output=sparse_output)
got = mlb.fit_transform(inp())
assert issparse(got) == sparse_output
if sparse_output:
# verify CSR assumption that indices and indptr have same dtype
assert got.indices.dtype == got.indptr.dtype
got = got.toarray()
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
# With fit
mlb = MultiLabelBinarizer(sparse_output=sparse_output)
got = mlb.fit(inp()).transform(inp())
assert issparse(got) == sparse_output
if sparse_output:
# verify CSR assumption that indices and indptr have same dtype
assert got.indices.dtype == got.indptr.dtype
got = got.toarray()
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse_output_multilabel_binarizer_errors(csr_container):
inp = iter([iter((2, 3)), iter((1,)), {1, 2}])
mlb = MultiLabelBinarizer(sparse_output=False)
mlb.fit(inp)
with pytest.raises(ValueError):
mlb.inverse_transform(
csr_container(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))
)
def test_multilabel_binarizer():
# test input as iterable of iterables
inputs = [
lambda: [(2, 3), (1,), (1, 2)],
lambda: ({2, 3}, {1}, {1, 2}),
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
]
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
inverse = inputs[0]()
for inp in inputs:
# With fit_transform
mlb = MultiLabelBinarizer()
got = mlb.fit_transform(inp())
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
# With fit
mlb = MultiLabelBinarizer()
got = mlb.fit(inp()).transform(inp())
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
def test_multilabel_binarizer_empty_sample():
mlb = MultiLabelBinarizer()
y = [[1, 2], [1], []]
Y = np.array([[1, 1], [1, 0], [0, 0]])
assert_array_equal(mlb.fit_transform(y), Y)
def test_multilabel_binarizer_unknown_class():
mlb = MultiLabelBinarizer()
y = [[1, 2]]
Y = np.array([[1, 0], [0, 1]])
warning_message = "unknown class.* will be ignored"
with pytest.warns(UserWarning, match=warning_message):
matrix = mlb.fit(y).transform([[4, 1], [2, 0]])
Y = np.array([[1, 0, 0], [0, 1, 0]])
mlb = MultiLabelBinarizer(classes=[1, 2, 3])
with pytest.warns(UserWarning, match=warning_message):
matrix = mlb.fit(y).transform([[4, 1], [2, 0]])
assert_array_equal(matrix, Y)
def test_multilabel_binarizer_given_classes():
inp = [(2, 3), (1,), (1, 2)]
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]])
# fit_transform()
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, [1, 3, 2])
# fit().transform()
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, [1, 3, 2])
# ensure works with extra class
mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2])
assert_array_equal(
mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))
)
assert_array_equal(mlb.classes_, [4, 1, 3, 2])
# ensure fit is no-op as iterable is not consumed
inp = iter(inp)
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
# ensure a ValueError is thrown if given duplicate classes
err_msg = (
"The classes argument contains duplicate classes. Remove "
"these duplicates before passing them to MultiLabelBinarizer."
)
mlb = MultiLabelBinarizer(classes=[1, 3, 2, 3])
with pytest.raises(ValueError, match=err_msg):
mlb.fit(inp)
def test_multilabel_binarizer_multiple_calls():
inp = [(2, 3), (1,), (1, 2)]
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]])
indicator_mat2 = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
# first call
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
# second call change class
mlb.classes = [1, 2, 3]
assert_array_equal(mlb.fit_transform(inp), indicator_mat2)
def test_multilabel_binarizer_same_length_sequence():
# Ensure sequences of the same length are not interpreted as a 2-d array
inp = [[1], [0], [2]]
indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
# fit_transform()
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
# fit().transform()
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
def test_multilabel_binarizer_non_integer_labels():
tuple_classes = _to_object_array([(1,), (2,), (3,)])
inputs = [
([("2", "3"), ("1",), ("1", "2")], ["1", "2", "3"]),
([("b", "c"), ("a",), ("a", "b")], ["a", "b", "c"]),
([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes),
]
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]])
for inp, classes in inputs:
# fit_transform()
mlb = MultiLabelBinarizer()
inp = np.array(inp, dtype=object)
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, classes)
indicator_mat_inv = np.array(mlb.inverse_transform(indicator_mat), dtype=object)
assert_array_equal(indicator_mat_inv, inp)
# fit().transform()
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, classes)
indicator_mat_inv = np.array(mlb.inverse_transform(indicator_mat), dtype=object)
assert_array_equal(indicator_mat_inv, inp)
mlb = MultiLabelBinarizer()
with pytest.raises(TypeError):
mlb.fit_transform([({}), ({}, {"a": "b"})])
def test_multilabel_binarizer_non_unique():
inp = [(1, 1, 1, 0)]
indicator_mat = np.array([[1, 1]])
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
def test_multilabel_binarizer_inverse_validation():
inp = [(1, 1, 1, 0)]
mlb = MultiLabelBinarizer()
mlb.fit_transform(inp)
# Not binary
with pytest.raises(ValueError):
mlb.inverse_transform(np.array([[1, 3]]))
# The following binary cases are fine, however
mlb.inverse_transform(np.array([[0, 0]]))
mlb.inverse_transform(np.array([[1, 1]]))
mlb.inverse_transform(np.array([[1, 0]]))
# Wrong shape
with pytest.raises(ValueError):
mlb.inverse_transform(np.array([[1]]))
with pytest.raises(ValueError):
mlb.inverse_transform(np.array([[1, 1, 1]]))
def test_label_binarize_with_class_order():
out = label_binarize([1, 6], classes=[1, 2, 4, 6])
expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]])
assert_array_equal(out, expected)
# Modified class order
out = label_binarize([1, 6], classes=[1, 6, 4, 2])
expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
assert_array_equal(out, expected)
out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1])
expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]])
assert_array_equal(out, expected)
def check_binarized_results(y, classes, pos_label, neg_label, expected):
for sparse_output in [True, False]:
if (pos_label == 0 or neg_label != 0) and sparse_output:
with pytest.raises(ValueError):
label_binarize(
y,
classes=classes,
neg_label=neg_label,
pos_label=pos_label,
sparse_output=sparse_output,
)
continue
# check label_binarize
binarized = label_binarize(
y,
classes=classes,
neg_label=neg_label,
pos_label=pos_label,
sparse_output=sparse_output,
)
assert_array_equal(toarray(binarized), expected)
assert issparse(binarized) == sparse_output
# check inverse
y_type = type_of_target(y)
if y_type == "multiclass":
inversed = _inverse_binarize_multiclass(binarized, classes=classes)
else:
inversed = _inverse_binarize_thresholding(
binarized,
output_type=y_type,
classes=classes,
threshold=((neg_label + pos_label) / 2.0),
)
assert_array_equal(toarray(inversed), toarray(y))
# Check label binarizer
lb = LabelBinarizer(
neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output
)
binarized = lb.fit_transform(y)
assert_array_equal(toarray(binarized), expected)
assert issparse(binarized) == sparse_output
inverse_output = lb.inverse_transform(binarized)
assert_array_equal(toarray(inverse_output), toarray(y))
assert issparse(inverse_output) == issparse(y)
def test_label_binarize_binary():
y = [0, 1, 0]
classes = [0, 1]
pos_label = 2
neg_label = -1
expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1))
check_binarized_results(y, classes, pos_label, neg_label, expected)
# Binary case where sparse_output = True will not result in a ValueError
y = [0, 1, 0]
classes = [0, 1]
pos_label = 3
neg_label = 0
expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1))
check_binarized_results(y, classes, pos_label, neg_label, expected)
def test_label_binarize_multiclass():
y = [0, 1, 2]
classes = [0, 1, 2]
pos_label = 2
neg_label = 0
expected = 2 * np.eye(3)
check_binarized_results(y, classes, pos_label, neg_label, expected)
with pytest.raises(ValueError):
label_binarize(
y, classes=classes, neg_label=-1, pos_label=pos_label, sparse_output=True
)
@pytest.mark.parametrize(
"arr_type",
[np.array]
+ COO_CONTAINERS
+ CSC_CONTAINERS
+ CSR_CONTAINERS
+ DOK_CONTAINERS
+ LIL_CONTAINERS,
)
def test_label_binarize_multilabel(arr_type):
y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]])
classes = [0, 1, 2]
pos_label = 2
neg_label = 0
expected = pos_label * y_ind
y = arr_type(y_ind)
check_binarized_results(y, classes, pos_label, neg_label, expected)
with pytest.raises(ValueError):
label_binarize(
y, classes=classes, neg_label=-1, pos_label=pos_label, sparse_output=True
)
def test_invalid_input_label_binarize():
with pytest.raises(ValueError):
label_binarize([0, 2], classes=[0, 2], pos_label=0, neg_label=1)
with pytest.raises(ValueError, match="continuous target data is not "):
label_binarize([1.2, 2.7], classes=[0, 1])
with pytest.raises(ValueError, match="mismatch with the labels"):
label_binarize([[1, 3]], classes=[1, 2, 3])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_inverse_binarize_multiclass(csr_container):
got = _inverse_binarize_multiclass(
csr_container([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)
)
assert_array_equal(got, np.array([1, 1, 0]))
def test_nan_label_encoder():
"""Check that label encoder encodes nans in transform.
Non-regression test for #22628.
"""
le = LabelEncoder()
le.fit(["a", "a", "b", np.nan])
y_trans = le.transform([np.nan])
assert_array_equal(y_trans, [2])
@pytest.mark.parametrize(
"encoder", [LabelEncoder(), LabelBinarizer(), MultiLabelBinarizer()]
)
def test_label_encoders_do_not_have_set_output(encoder):
"""Check that label encoders do not define set_output and work with y as a kwarg.
Non-regression test for #26854.
"""
assert not hasattr(encoder, "set_output")
y_encoded_with_kwarg = encoder.fit_transform(y=["a", "b", "c"])
y_encoded_positional = encoder.fit_transform(["a", "b", "c"])
assert_array_equal(y_encoded_with_kwarg, y_encoded_positional)