3RNN/Lib/site-packages/sklearn/tree/tests/test_export.py
2024-05-26 19:49:15 +02:00

547 lines
18 KiB
Python

"""
Testing for export functions of decision trees (sklearn.tree.export).
"""
from io import StringIO
from re import finditer, search
from textwrap import dedent
import numpy as np
import pytest
from numpy.random import RandomState
from sklearn.base import is_classifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.exceptions import NotFittedError
from sklearn.tree import (
DecisionTreeClassifier,
DecisionTreeRegressor,
export_graphviz,
export_text,
plot_tree,
)
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]]
w = [1, 1, 1, 0.5, 0.5, 0.5]
y_degraded = [1, 1, 1, 1, 1, 1]
def test_graphviz_toy():
# Check correctness of export_graphviz
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="gini", random_state=2
)
clf.fit(X, y)
# Test export code
contents1 = export_graphviz(clf, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test plot_options
contents1 = export_graphviz(
clf,
filled=True,
impurity=False,
proportion=True,
special_characters=True,
rounded=True,
out_file=None,
fontname="sans",
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled, rounded", color="black", '
'fontname="sans"] ;\n'
'edge [fontname="sans"] ;\n'
"0 [label=<x<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>"
'value = [0.5, 0.5]>, fillcolor="#ffffff"] ;\n'
"1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, "
'fillcolor="#e58139"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
"2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, "
'fillcolor="#399de5"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test max_depth
contents1 = export_graphviz(clf, max_depth=0, class_names=True, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]\\nclass = y[0]"] ;\n'
'1 [label="(...)"] ;\n'
"0 -> 1 ;\n"
'2 [label="(...)"] ;\n'
"0 -> 2 ;\n"
"}"
)
assert contents1 == contents2
# Test max_depth with plot_options
contents1 = export_graphviz(
clf, max_depth=0, filled=True, out_file=None, node_ids=True
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="node #0\\nx[0] <= 0.0\\ngini = 0.5\\n'
'samples = 6\\nvalue = [3, 3]", fillcolor="#ffffff"] ;\n'
'1 [label="(...)", fillcolor="#C0C0C0"] ;\n'
"0 -> 1 ;\n"
'2 [label="(...)", fillcolor="#C0C0C0"] ;\n'
"0 -> 2 ;\n"
"}"
)
assert contents1 == contents2
# Test multi-output with weighted samples
clf = DecisionTreeClassifier(
max_depth=2, min_samples_split=2, criterion="gini", random_state=2
)
clf = clf.fit(X, y2, sample_weight=w)
contents1 = export_graphviz(clf, filled=True, impurity=False, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\nsamples = 6\\n'
"value = [[3.0, 1.5, 0.0]\\n"
'[3.0, 1.0, 0.5]]", fillcolor="#ffffff"] ;\n'
'1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n'
'[3, 0, 0]]", fillcolor="#e58139"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="x[0] <= 1.5\\nsamples = 3\\n'
"value = [[0.0, 1.5, 0.0]\\n"
'[0.0, 1.0, 0.5]]", fillcolor="#f1bd97"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
'3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n'
'[0, 1, 0]]", fillcolor="#e58139"] ;\n'
"2 -> 3 ;\n"
'4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n'
'[0.0, 0.0, 0.5]]", fillcolor="#e58139"] ;\n'
"2 -> 4 ;\n"
"}"
)
assert contents1 == contents2
# Test regression output with plot_options
clf = DecisionTreeRegressor(
max_depth=3, min_samples_split=2, criterion="squared_error", random_state=2
)
clf.fit(X, y)
contents1 = export_graphviz(
clf,
filled=True,
leaves_parallel=True,
out_file=None,
rotate=True,
rounded=True,
fontname="sans",
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled, rounded", color="black", '
'fontname="sans"] ;\n'
"graph [ranksep=equally, splines=polyline] ;\n"
'edge [fontname="sans"] ;\n'
"rankdir=LR ;\n"
'0 [label="x[0] <= 0.0\\nsquared_error = 1.0\\nsamples = 6\\n'
'value = 0.0", fillcolor="#f2c09c"] ;\n'
'1 [label="squared_error = 0.0\\nsamples = 3\\'
'nvalue = -1.0", '
'fillcolor="#ffffff"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=-45, "
'headlabel="True"] ;\n'
'2 [label="squared_error = 0.0\\nsamples = 3\\nvalue = 1.0", '
'fillcolor="#e58139"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=45, "
'headlabel="False"] ;\n'
"{rank=same ; 0} ;\n"
"{rank=same ; 1; 2} ;\n"
"}"
)
assert contents1 == contents2
# Test classifier with degraded learning set
clf = DecisionTreeClassifier(max_depth=3)
clf.fit(X, y_degraded)
contents1 = export_graphviz(clf, filled=True, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", '
'fillcolor="#ffffff"] ;\n'
"}"
)
@pytest.mark.parametrize("constructor", [list, np.array])
def test_graphviz_feature_class_names_array_support(constructor):
# Check that export_graphviz treats feature names
# and class names correctly and supports arrays
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="gini", random_state=2
)
clf.fit(X, y)
# Test with feature_names
contents1 = export_graphviz(
clf, feature_names=constructor(["feature0", "feature1"]), out_file=None
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test with class_names
contents1 = export_graphviz(
clf, class_names=constructor(["yes", "no"]), out_file=None
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]\\nclass = yes"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n'
'class = yes"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n'
'class = no"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
def test_graphviz_errors():
# Check for errors of export_graphviz
clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2)
# Check not-fitted decision tree error
out = StringIO()
with pytest.raises(NotFittedError):
export_graphviz(clf, out)
clf.fit(X, y)
# Check if it errors when length of feature_names
# mismatches with number of features
message = "Length of feature_names, 1 does not match number of features, 2"
with pytest.raises(ValueError, match=message):
export_graphviz(clf, None, feature_names=["a"])
message = "Length of feature_names, 3 does not match number of features, 2"
with pytest.raises(ValueError, match=message):
export_graphviz(clf, None, feature_names=["a", "b", "c"])
# Check error when argument is not an estimator
message = "is not an estimator instance"
with pytest.raises(TypeError, match=message):
export_graphviz(clf.fit(X, y).tree_)
# Check class_names error
out = StringIO()
with pytest.raises(IndexError):
export_graphviz(clf, out, class_names=[])
def test_friedman_mse_in_graphviz():
clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
clf.fit(X, y)
dot_data = StringIO()
export_graphviz(clf, out_file=dot_data)
clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
clf.fit(X, y)
for estimator in clf.estimators_:
export_graphviz(estimator[0], out_file=dot_data)
for finding in finditer(r"\[.*?samples.*?\]", dot_data.getvalue()):
assert "friedman_mse" in finding.group()
def test_precision():
rng_reg = RandomState(2)
rng_clf = RandomState(8)
for X, y, clf in zip(
(rng_reg.random_sample((5, 2)), rng_clf.random_sample((1000, 4))),
(rng_reg.random_sample((5,)), rng_clf.randint(2, size=(1000,))),
(
DecisionTreeRegressor(
criterion="friedman_mse", random_state=0, max_depth=1
),
DecisionTreeClassifier(max_depth=1, random_state=0),
),
):
clf.fit(X, y)
for precision in (4, 3):
dot_data = export_graphviz(
clf, out_file=None, precision=precision, proportion=True
)
# With the current random state, the impurity and the threshold
# will have the number of precision set in the export_graphviz
# function. We will check the number of precision with a strict
# equality. The value reported will have only 2 precision and
# therefore, only a less equal comparison will be done.
# check value
for finding in finditer(r"value = \d+\.\d+", dot_data):
assert len(search(r"\.\d+", finding.group()).group()) <= precision + 1
# check impurity
if is_classifier(clf):
pattern = r"gini = \d+\.\d+"
else:
pattern = r"friedman_mse = \d+\.\d+"
# check impurity
for finding in finditer(pattern, dot_data):
assert len(search(r"\.\d+", finding.group()).group()) == precision + 1
# check threshold
for finding in finditer(r"<= \d+\.\d+", dot_data):
assert len(search(r"\.\d+", finding.group()).group()) == precision + 1
def test_export_text_errors():
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
err_msg = "feature_names must contain 2 elements, got 1"
with pytest.raises(ValueError, match=err_msg):
export_text(clf, feature_names=["a"])
err_msg = (
"When `class_names` is an array, it should contain as"
" many items as `decision_tree.classes_`. Got 1 while"
" the tree was fitted with 2 classes."
)
with pytest.raises(ValueError, match=err_msg):
export_text(clf, class_names=["a"])
def test_export_text():
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
expected_report = dedent(
"""
|--- feature_1 <= 0.00
| |--- class: -1
|--- feature_1 > 0.00
| |--- class: 1
"""
).lstrip()
assert export_text(clf) == expected_report
# testing that leaves at level 1 are not truncated
assert export_text(clf, max_depth=0) == expected_report
# testing that the rest of the tree is truncated
assert export_text(clf, max_depth=10) == expected_report
expected_report = dedent(
"""
|--- feature_1 <= 0.00
| |--- weights: [3.00, 0.00] class: -1
|--- feature_1 > 0.00
| |--- weights: [0.00, 3.00] class: 1
"""
).lstrip()
assert export_text(clf, show_weights=True) == expected_report
expected_report = dedent(
"""
|- feature_1 <= 0.00
| |- class: -1
|- feature_1 > 0.00
| |- class: 1
"""
).lstrip()
assert export_text(clf, spacing=1) == expected_report
X_l = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, 1]]
y_l = [-1, -1, -1, 1, 1, 1, 2]
clf = DecisionTreeClassifier(max_depth=4, random_state=0)
clf.fit(X_l, y_l)
expected_report = dedent(
"""
|--- feature_1 <= 0.00
| |--- class: -1
|--- feature_1 > 0.00
| |--- truncated branch of depth 2
"""
).lstrip()
assert export_text(clf, max_depth=0) == expected_report
X_mo = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y_mo = [[-1, -1], [-1, -1], [-1, -1], [1, 1], [1, 1], [1, 1]]
reg = DecisionTreeRegressor(max_depth=2, random_state=0)
reg.fit(X_mo, y_mo)
expected_report = dedent(
"""
|--- feature_1 <= 0.0
| |--- value: [-1.0, -1.0]
|--- feature_1 > 0.0
| |--- value: [1.0, 1.0]
"""
).lstrip()
assert export_text(reg, decimals=1) == expected_report
assert export_text(reg, decimals=1, show_weights=True) == expected_report
X_single = [[-2], [-1], [-1], [1], [1], [2]]
reg = DecisionTreeRegressor(max_depth=2, random_state=0)
reg.fit(X_single, y_mo)
expected_report = dedent(
"""
|--- first <= 0.0
| |--- value: [-1.0, -1.0]
|--- first > 0.0
| |--- value: [1.0, 1.0]
"""
).lstrip()
assert export_text(reg, decimals=1, feature_names=["first"]) == expected_report
assert (
export_text(reg, decimals=1, show_weights=True, feature_names=["first"])
== expected_report
)
@pytest.mark.parametrize("constructor", [list, np.array])
def test_export_text_feature_class_names_array_support(constructor):
# Check that export_graphviz treats feature names
# and class names correctly and supports arrays
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
expected_report = dedent(
"""
|--- b <= 0.00
| |--- class: -1
|--- b > 0.00
| |--- class: 1
"""
).lstrip()
assert export_text(clf, feature_names=constructor(["a", "b"])) == expected_report
expected_report = dedent(
"""
|--- feature_1 <= 0.00
| |--- class: cat
|--- feature_1 > 0.00
| |--- class: dog
"""
).lstrip()
assert export_text(clf, class_names=constructor(["cat", "dog"])) == expected_report
def test_plot_tree_entropy(pyplot):
# mostly smoke tests
# Check correctness of export_graphviz for criterion = entropy
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="entropy", random_state=2
)
clf.fit(X, y)
# Test export code
feature_names = ["first feat", "sepal_width"]
nodes = plot_tree(clf, feature_names=feature_names)
assert len(nodes) == 5
assert (
nodes[0].get_text()
== "first feat <= 0.0\nentropy = 1.0\nsamples = 6\nvalue = [3, 3]"
)
assert nodes[1].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [3, 0]"
assert nodes[2].get_text() == "True "
assert nodes[3].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [0, 3]"
assert nodes[4].get_text() == " False"
@pytest.mark.parametrize("fontsize", [None, 10, 20])
def test_plot_tree_gini(pyplot, fontsize):
# mostly smoke tests
# Check correctness of export_graphviz for criterion = gini
clf = DecisionTreeClassifier(
max_depth=3,
min_samples_split=2,
criterion="gini",
random_state=2,
)
clf.fit(X, y)
# Test export code
feature_names = ["first feat", "sepal_width"]
nodes = plot_tree(clf, feature_names=feature_names, fontsize=fontsize)
assert len(nodes) == 5
if fontsize is not None:
assert all(node.get_fontsize() == fontsize for node in nodes)
assert (
nodes[0].get_text()
== "first feat <= 0.0\ngini = 0.5\nsamples = 6\nvalue = [3, 3]"
)
assert nodes[1].get_text() == "gini = 0.0\nsamples = 3\nvalue = [3, 0]"
assert nodes[2].get_text() == "True "
assert nodes[3].get_text() == "gini = 0.0\nsamples = 3\nvalue = [0, 3]"
assert nodes[4].get_text() == " False"
def test_not_fitted_tree(pyplot):
# Testing if not fitted tree throws the correct error
clf = DecisionTreeRegressor()
with pytest.raises(NotFittedError):
plot_tree(clf)