3RNN/Lib/site-packages/sklearn/utils/random.py
2024-05-26 19:49:15 +02:00

104 lines
3.6 KiB
Python

"""
The mod:`sklearn.utils.random` module includes utilities for random sampling.
"""
# Author: Hamzeh Alsalhi <ha258@cornell.edu>
#
# License: BSD 3 clause
import array
import numpy as np
import scipy.sparse as sp
from . import check_random_state
from ._random import sample_without_replacement
__all__ = ["sample_without_replacement"]
def _random_choice_csc(n_samples, classes, class_probability=None, random_state=None):
"""Generate a sparse random matrix given column class distributions
Parameters
----------
n_samples : int,
Number of samples to draw in each column.
classes : list of size n_outputs of arrays of size (n_classes,)
List of classes for each column.
class_probability : list of size n_outputs of arrays of \
shape (n_classes,), default=None
Class distribution of each column. If None, uniform distribution is
assumed.
random_state : int, RandomState instance or None, default=None
Controls the randomness of the sampled classes.
See :term:`Glossary <random_state>`.
Returns
-------
random_matrix : sparse csc matrix of size (n_samples, n_outputs)
"""
data = array.array("i")
indices = array.array("i")
indptr = array.array("i", [0])
for j in range(len(classes)):
classes[j] = np.asarray(classes[j])
if classes[j].dtype.kind != "i":
raise ValueError("class dtype %s is not supported" % classes[j].dtype)
classes[j] = classes[j].astype(np.int64, copy=False)
# use uniform distribution if no class_probability is given
if class_probability is None:
class_prob_j = np.empty(shape=classes[j].shape[0])
class_prob_j.fill(1 / classes[j].shape[0])
else:
class_prob_j = np.asarray(class_probability[j])
if not np.isclose(np.sum(class_prob_j), 1.0):
raise ValueError(
"Probability array at index {0} does not sum to one".format(j)
)
if class_prob_j.shape[0] != classes[j].shape[0]:
raise ValueError(
"classes[{0}] (length {1}) and "
"class_probability[{0}] (length {2}) have "
"different length.".format(
j, classes[j].shape[0], class_prob_j.shape[0]
)
)
# If 0 is not present in the classes insert it with a probability 0.0
if 0 not in classes[j]:
classes[j] = np.insert(classes[j], 0, 0)
class_prob_j = np.insert(class_prob_j, 0, 0.0)
# If there are nonzero classes choose randomly using class_probability
rng = check_random_state(random_state)
if classes[j].shape[0] > 1:
index_class_0 = np.flatnonzero(classes[j] == 0).item()
p_nonzero = 1 - class_prob_j[index_class_0]
nnz = int(n_samples * p_nonzero)
ind_sample = sample_without_replacement(
n_population=n_samples, n_samples=nnz, random_state=random_state
)
indices.extend(ind_sample)
# Normalize probabilities for the nonzero elements
classes_j_nonzero = classes[j] != 0
class_probability_nz = class_prob_j[classes_j_nonzero]
class_probability_nz_norm = class_probability_nz / np.sum(
class_probability_nz
)
classes_ind = np.searchsorted(
class_probability_nz_norm.cumsum(), rng.uniform(size=nnz)
)
data.extend(classes[j][classes_j_nonzero][classes_ind])
indptr.append(len(indices))
return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)