1220 lines
42 KiB
C++
1220 lines
42 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// RepeatedField and RepeatedPtrField are used by generated protocol message
|
|
// classes to manipulate repeated fields. These classes are very similar to
|
|
// STL's vector, but include a number of optimizations found to be useful
|
|
// specifically in the case of Protocol Buffers. RepeatedPtrField is
|
|
// particularly different from STL vector as it manages ownership of the
|
|
// pointers that it contains.
|
|
//
|
|
// This header covers RepeatedField.
|
|
|
|
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
|
|
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
|
|
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include <google/protobuf/stubs/logging.h>
|
|
#include <google/protobuf/stubs/common.h>
|
|
#include <google/protobuf/arena.h>
|
|
#include <google/protobuf/port.h>
|
|
#include <google/protobuf/message_lite.h>
|
|
#include <google/protobuf/repeated_ptr_field.h>
|
|
|
|
|
|
// Must be included last.
|
|
#include <google/protobuf/port_def.inc>
|
|
|
|
#ifdef SWIG
|
|
#error "You cannot SWIG proto headers"
|
|
#endif
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
|
|
class Message;
|
|
|
|
namespace internal {
|
|
|
|
template <typename T, int kRepHeaderSize>
|
|
constexpr int RepeatedFieldLowerClampLimit() {
|
|
// The header is padded to be at least `sizeof(T)` when it would be smaller
|
|
// otherwise.
|
|
static_assert(sizeof(T) <= kRepHeaderSize, "");
|
|
// We want to pad the minimum size to be a power of two bytes, including the
|
|
// header.
|
|
// The first allocation is kRepHeaderSize bytes worth of elements for a total
|
|
// of 2*kRepHeaderSize bytes.
|
|
// For an 8-byte header, we allocate 8 bool, 2 ints, or 1 int64.
|
|
return kRepHeaderSize / sizeof(T);
|
|
}
|
|
|
|
// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
|
|
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
|
|
// this will clamp to the maximum int value instead of following exponential
|
|
// growth when growing a repeated field.
|
|
constexpr int kRepeatedFieldUpperClampLimit =
|
|
(std::numeric_limits<int>::max() / 2) + 1;
|
|
|
|
template <typename Iter>
|
|
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
|
|
return static_cast<int>(std::distance(begin, end));
|
|
}
|
|
|
|
template <typename Iter>
|
|
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
|
|
std::input_iterator_tag /*unused*/) {
|
|
return -1;
|
|
}
|
|
|
|
template <typename Iter>
|
|
inline int CalculateReserve(Iter begin, Iter end) {
|
|
typedef typename std::iterator_traits<Iter>::iterator_category Category;
|
|
return CalculateReserve(begin, end, Category());
|
|
}
|
|
|
|
// Swaps two blocks of memory of size sizeof(T).
|
|
template <typename T>
|
|
inline void SwapBlock(char* p, char* q) {
|
|
T tmp;
|
|
memcpy(&tmp, p, sizeof(T));
|
|
memcpy(p, q, sizeof(T));
|
|
memcpy(q, &tmp, sizeof(T));
|
|
}
|
|
|
|
// Swaps two blocks of memory of size kSize:
|
|
// template <int kSize> void memswap(char* p, char* q);
|
|
template <int kSize>
|
|
inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
|
|
}
|
|
|
|
#define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \
|
|
template <int kSize> \
|
|
typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
|
|
void>::type \
|
|
memswap(char* p, char* q) { \
|
|
SwapBlock<reg_type>(p, q); \
|
|
memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \
|
|
q + sizeof(reg_type)); \
|
|
}
|
|
|
|
PROTO_MEMSWAP_DEF_SIZE(uint8_t, 2)
|
|
PROTO_MEMSWAP_DEF_SIZE(uint16_t, 4)
|
|
PROTO_MEMSWAP_DEF_SIZE(uint32_t, 8)
|
|
|
|
#ifdef __SIZEOF_INT128__
|
|
PROTO_MEMSWAP_DEF_SIZE(uint64_t, 16)
|
|
PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
|
|
#else
|
|
PROTO_MEMSWAP_DEF_SIZE(uint64_t, (1u << 31))
|
|
#endif
|
|
|
|
#undef PROTO_MEMSWAP_DEF_SIZE
|
|
|
|
template <typename Element>
|
|
class RepeatedIterator;
|
|
|
|
} // namespace internal
|
|
|
|
// RepeatedField is used to represent repeated fields of a primitive type (in
|
|
// other words, everything except strings and nested Messages). Most users will
|
|
// not ever use a RepeatedField directly; they will use the get-by-index,
|
|
// set-by-index, and add accessors that are generated for all repeated fields.
|
|
template <typename Element>
|
|
class RepeatedField final {
|
|
static_assert(
|
|
alignof(Arena) >= alignof(Element),
|
|
"We only support types that have an alignment smaller than Arena");
|
|
|
|
public:
|
|
constexpr RepeatedField();
|
|
explicit RepeatedField(Arena* arena);
|
|
|
|
RepeatedField(const RepeatedField& other);
|
|
|
|
template <typename Iter,
|
|
typename = typename std::enable_if<std::is_constructible<
|
|
Element, decltype(*std::declval<Iter>())>::value>::type>
|
|
RepeatedField(Iter begin, Iter end);
|
|
|
|
~RepeatedField();
|
|
|
|
RepeatedField& operator=(const RepeatedField& other);
|
|
|
|
RepeatedField(RepeatedField&& other) noexcept;
|
|
RepeatedField& operator=(RepeatedField&& other) noexcept;
|
|
|
|
bool empty() const;
|
|
int size() const;
|
|
|
|
const Element& Get(int index) const;
|
|
Element* Mutable(int index);
|
|
|
|
const Element& operator[](int index) const { return Get(index); }
|
|
Element& operator[](int index) { return *Mutable(index); }
|
|
|
|
const Element& at(int index) const;
|
|
Element& at(int index);
|
|
|
|
void Set(int index, const Element& value);
|
|
void Add(const Element& value);
|
|
// Appends a new element and returns a pointer to it.
|
|
// The new element is uninitialized if |Element| is a POD type.
|
|
Element* Add();
|
|
// Appends elements in the range [begin, end) after reserving
|
|
// the appropriate number of elements.
|
|
template <typename Iter>
|
|
void Add(Iter begin, Iter end);
|
|
|
|
// Removes the last element in the array.
|
|
void RemoveLast();
|
|
|
|
// Extracts elements with indices in "[start .. start+num-1]".
|
|
// Copies them into "elements[0 .. num-1]" if "elements" is not nullptr.
|
|
// Caution: also moves elements with indices [start+num ..].
|
|
// Calling this routine inside a loop can cause quadratic behavior.
|
|
void ExtractSubrange(int start, int num, Element* elements);
|
|
|
|
PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear();
|
|
void MergeFrom(const RepeatedField& other);
|
|
PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other);
|
|
|
|
// Replaces the contents with RepeatedField(begin, end).
|
|
template <typename Iter>
|
|
PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
|
|
|
|
// Reserves space to expand the field to at least the given size. If the
|
|
// array is grown, it will always be at least doubled in size.
|
|
void Reserve(int new_size);
|
|
|
|
// Resizes the RepeatedField to a new, smaller size. This is O(1).
|
|
void Truncate(int new_size);
|
|
|
|
void AddAlreadyReserved(const Element& value);
|
|
// Appends a new element and return a pointer to it.
|
|
// The new element is uninitialized if |Element| is a POD type.
|
|
// Should be called only if Capacity() > Size().
|
|
Element* AddAlreadyReserved();
|
|
Element* AddNAlreadyReserved(int elements);
|
|
int Capacity() const;
|
|
|
|
// Like STL resize. Uses value to fill appended elements.
|
|
// Like Truncate() if new_size <= size(), otherwise this is
|
|
// O(new_size - size()).
|
|
void Resize(int new_size, const Element& value);
|
|
|
|
// Gets the underlying array. This pointer is possibly invalidated by
|
|
// any add or remove operation.
|
|
Element* mutable_data();
|
|
const Element* data() const;
|
|
|
|
// Swaps entire contents with "other". If they are separate arenas then,
|
|
// copies data between each other.
|
|
void Swap(RepeatedField* other);
|
|
|
|
// Swaps entire contents with "other". Should be called only if the caller can
|
|
// guarantee that both repeated fields are on the same arena or are on the
|
|
// heap. Swapping between different arenas is disallowed and caught by a
|
|
// GOOGLE_DCHECK (see API docs for details).
|
|
void UnsafeArenaSwap(RepeatedField* other);
|
|
|
|
// Swaps two elements.
|
|
void SwapElements(int index1, int index2);
|
|
|
|
// STL-like iterator support
|
|
typedef internal::RepeatedIterator<Element> iterator;
|
|
typedef internal::RepeatedIterator<const Element> const_iterator;
|
|
typedef Element value_type;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
typedef value_type* pointer;
|
|
typedef const value_type* const_pointer;
|
|
typedef int size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
|
|
iterator begin();
|
|
const_iterator begin() const;
|
|
const_iterator cbegin() const;
|
|
iterator end();
|
|
const_iterator end() const;
|
|
const_iterator cend() const;
|
|
|
|
// Reverse iterator support
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
|
const_reverse_iterator rbegin() const {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
reverse_iterator rend() { return reverse_iterator(begin()); }
|
|
const_reverse_iterator rend() const {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
// Returns the number of bytes used by the repeated field, excluding
|
|
// sizeof(*this)
|
|
size_t SpaceUsedExcludingSelfLong() const;
|
|
|
|
int SpaceUsedExcludingSelf() const {
|
|
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
|
|
}
|
|
|
|
// Removes the element referenced by position.
|
|
//
|
|
// Returns an iterator to the element immediately following the removed
|
|
// element.
|
|
//
|
|
// Invalidates all iterators at or after the removed element, including end().
|
|
iterator erase(const_iterator position);
|
|
|
|
// Removes the elements in the range [first, last).
|
|
//
|
|
// Returns an iterator to the element immediately following the removed range.
|
|
//
|
|
// Invalidates all iterators at or after the removed range, including end().
|
|
iterator erase(const_iterator first, const_iterator last);
|
|
|
|
// Gets the Arena on which this RepeatedField stores its elements.
|
|
inline Arena* GetArena() const {
|
|
return GetOwningArena();
|
|
}
|
|
|
|
// For internal use only.
|
|
//
|
|
// This is public due to it being called by generated code.
|
|
inline void InternalSwap(RepeatedField* other);
|
|
|
|
private:
|
|
template <typename T> friend class Arena::InternalHelper;
|
|
|
|
// Gets the Arena on which this RepeatedField stores its elements.
|
|
inline Arena* GetOwningArena() const {
|
|
return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
|
|
: rep()->arena;
|
|
}
|
|
|
|
static constexpr int kInitialSize = 0;
|
|
// A note on the representation here (see also comment below for
|
|
// RepeatedPtrFieldBase's struct Rep):
|
|
//
|
|
// We maintain the same sizeof(RepeatedField) as before we added arena support
|
|
// so that we do not degrade performance by bloating memory usage. Directly
|
|
// adding an arena_ element to RepeatedField is quite costly. By using
|
|
// indirection in this way, we keep the same size when the RepeatedField is
|
|
// empty (common case), and add only an 8-byte header to the elements array
|
|
// when non-empty. We make sure to place the size fields directly in the
|
|
// RepeatedField class to avoid costly cache misses due to the indirection.
|
|
int current_size_;
|
|
int total_size_;
|
|
// Pad the Rep after arena allow for power-of-two byte sizes when
|
|
// sizeof(Element) > sizeof(Arena*). eg for 16-byte objects.
|
|
static PROTOBUF_CONSTEXPR const size_t kRepHeaderSize =
|
|
sizeof(Arena*) < sizeof(Element) ? sizeof(Element) : sizeof(Arena*);
|
|
struct Rep {
|
|
Arena* arena;
|
|
Element* elements() {
|
|
return reinterpret_cast<Element*>(reinterpret_cast<char*>(this) +
|
|
kRepHeaderSize);
|
|
}
|
|
};
|
|
|
|
// If total_size_ == 0 this points to an Arena otherwise it points to the
|
|
// elements member of a Rep struct. Using this invariant allows the storage of
|
|
// the arena pointer without an extra allocation in the constructor.
|
|
void* arena_or_elements_;
|
|
|
|
// Returns a pointer to elements array.
|
|
// pre-condition: the array must have been allocated.
|
|
Element* elements() const {
|
|
GOOGLE_DCHECK_GT(total_size_, 0);
|
|
// Because of above pre-condition this cast is safe.
|
|
return unsafe_elements();
|
|
}
|
|
|
|
// Returns a pointer to elements array if it exists; otherwise either null or
|
|
// an invalid pointer is returned. This only happens for empty repeated
|
|
// fields, where you can't dereference this pointer anyway (it's empty).
|
|
Element* unsafe_elements() const {
|
|
return static_cast<Element*>(arena_or_elements_);
|
|
}
|
|
|
|
// Returns a pointer to the Rep struct.
|
|
// pre-condition: the Rep must have been allocated, ie elements() is safe.
|
|
Rep* rep() const {
|
|
return reinterpret_cast<Rep*>(reinterpret_cast<char*>(elements()) -
|
|
kRepHeaderSize);
|
|
}
|
|
|
|
friend class Arena;
|
|
typedef void InternalArenaConstructable_;
|
|
|
|
// Moves the contents of |from| into |to|, possibly clobbering |from| in the
|
|
// process. For primitive types this is just a memcpy(), but it could be
|
|
// specialized for non-primitive types to, say, swap each element instead.
|
|
void MoveArray(Element* to, Element* from, int size);
|
|
|
|
// Copies the elements of |from| into |to|.
|
|
void CopyArray(Element* to, const Element* from, int size);
|
|
|
|
// Internal helper to delete all elements and deallocate the storage.
|
|
void InternalDeallocate(Rep* rep, int size, bool in_destructor) {
|
|
if (rep != nullptr) {
|
|
Element* e = &rep->elements()[0];
|
|
if (!std::is_trivial<Element>::value) {
|
|
Element* limit = &rep->elements()[size];
|
|
for (; e < limit; e++) {
|
|
e->~Element();
|
|
}
|
|
}
|
|
const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
|
|
if (rep->arena == nullptr) {
|
|
internal::SizedDelete(rep, bytes);
|
|
} else if (!in_destructor) {
|
|
// If we are in the destructor, we might be being destroyed as part of
|
|
// the arena teardown. We can't try and return blocks to the arena then.
|
|
rep->arena->ReturnArrayMemory(rep, bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This class is a performance wrapper around RepeatedField::Add(const T&)
|
|
// function. In general unless a RepeatedField is a local stack variable LLVM
|
|
// has a hard time optimizing Add. The machine code tends to be
|
|
// loop:
|
|
// mov %size, dword ptr [%repeated_field] // load
|
|
// cmp %size, dword ptr [%repeated_field + 4]
|
|
// jae fallback
|
|
// mov %buffer, qword ptr [%repeated_field + 8]
|
|
// mov dword [%buffer + %size * 4], %value
|
|
// inc %size // increment
|
|
// mov dword ptr [%repeated_field], %size // store
|
|
// jmp loop
|
|
//
|
|
// This puts a load/store in each iteration of the important loop variable
|
|
// size. It's a pretty bad compile that happens even in simple cases, but
|
|
// largely the presence of the fallback path disturbs the compilers mem-to-reg
|
|
// analysis.
|
|
//
|
|
// This class takes ownership of a repeated field for the duration of its
|
|
// lifetime. The repeated field should not be accessed during this time, ie.
|
|
// only access through this class is allowed. This class should always be a
|
|
// function local stack variable. Intended use
|
|
//
|
|
// void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
|
|
// {
|
|
// RepeatedFieldAdder<int> adder(out); // Take ownership of out
|
|
// for (auto it = begin; it != end; ++it) {
|
|
// adder.Add(*it);
|
|
// }
|
|
// }
|
|
//
|
|
// Typically, due to the fact that adder is a local stack variable, the
|
|
// compiler will be successful in mem-to-reg transformation and the machine
|
|
// code will be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer
|
|
// + %size * 4], %val inc %size jmp loop
|
|
//
|
|
// The first version executes at 7 cycles per iteration while the second
|
|
// version executes at only 1 or 2 cycles.
|
|
template <int = 0, bool = std::is_trivial<Element>::value>
|
|
class FastAdderImpl {
|
|
public:
|
|
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {
|
|
index_ = repeated_field_->current_size_;
|
|
capacity_ = repeated_field_->total_size_;
|
|
buffer_ = repeated_field_->unsafe_elements();
|
|
}
|
|
~FastAdderImpl() { repeated_field_->current_size_ = index_; }
|
|
|
|
void Add(Element val) {
|
|
if (index_ == capacity_) {
|
|
repeated_field_->current_size_ = index_;
|
|
repeated_field_->Reserve(index_ + 1);
|
|
capacity_ = repeated_field_->total_size_;
|
|
buffer_ = repeated_field_->unsafe_elements();
|
|
}
|
|
buffer_[index_++] = val;
|
|
}
|
|
|
|
private:
|
|
RepeatedField* repeated_field_;
|
|
int index_;
|
|
int capacity_;
|
|
Element* buffer_;
|
|
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
|
|
};
|
|
|
|
// FastAdder is a wrapper for adding fields. The specialization above handles
|
|
// POD types more efficiently than RepeatedField.
|
|
template <int I>
|
|
class FastAdderImpl<I, false> {
|
|
public:
|
|
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {}
|
|
void Add(const Element& val) { repeated_field_->Add(val); }
|
|
|
|
private:
|
|
RepeatedField* repeated_field_;
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
|
|
};
|
|
|
|
using FastAdder = FastAdderImpl<>;
|
|
|
|
friend class TestRepeatedFieldHelper;
|
|
friend class ::google::protobuf::internal::ParseContext;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
// This is a helper template to copy an array of elements efficiently when they
|
|
// have a trivial copy constructor, and correctly otherwise. This really
|
|
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
|
|
// effectively.
|
|
template <typename Element,
|
|
bool HasTrivialCopy = std::is_trivial<Element>::value>
|
|
struct ElementCopier {
|
|
void operator()(Element* to, const Element* from, int array_size);
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// implementation ====================================================
|
|
|
|
template <typename Element>
|
|
constexpr RepeatedField<Element>::RepeatedField()
|
|
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>::RepeatedField(Arena* arena)
|
|
: current_size_(0), total_size_(0), arena_or_elements_(arena) {}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
|
|
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
|
|
if (other.current_size_ != 0) {
|
|
Reserve(other.size());
|
|
AddNAlreadyReserved(other.size());
|
|
CopyArray(Mutable(0), &other.Get(0), other.size());
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter, typename>
|
|
RepeatedField<Element>::RepeatedField(Iter begin, Iter end)
|
|
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
|
|
Add(begin, end);
|
|
}
|
|
|
|
template <typename Element>
|
|
RepeatedField<Element>::~RepeatedField() {
|
|
#ifndef NDEBUG
|
|
// Try to trigger segfault / asan failure in non-opt builds if arena_
|
|
// lifetime has ended before the destructor.
|
|
auto arena = GetOwningArena();
|
|
if (arena) (void)arena->SpaceAllocated();
|
|
#endif
|
|
if (total_size_ > 0) {
|
|
InternalDeallocate(rep(), total_size_, true);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
|
|
const RepeatedField& other) {
|
|
if (this != &other) CopyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
|
|
: RepeatedField() {
|
|
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
|
|
CopyFrom(other);
|
|
#else // PROTOBUF_FORCE_COPY_IN_MOVE
|
|
// We don't just call Swap(&other) here because it would perform 3 copies if
|
|
// other is on an arena. This field can't be on an arena because arena
|
|
// construction always uses the Arena* accepting constructor.
|
|
if (other.GetOwningArena()) {
|
|
CopyFrom(other);
|
|
} else {
|
|
InternalSwap(&other);
|
|
}
|
|
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
|
|
RepeatedField&& other) noexcept {
|
|
// We don't just call Swap(&other) here because it would perform 3 copies if
|
|
// the two fields are on different arenas.
|
|
if (this != &other) {
|
|
if (GetOwningArena() != other.GetOwningArena()
|
|
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
|
|
|| GetOwningArena() == nullptr
|
|
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
|
|
) {
|
|
CopyFrom(other);
|
|
} else {
|
|
InternalSwap(&other);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline bool RepeatedField<Element>::empty() const {
|
|
return current_size_ == 0;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline int RepeatedField<Element>::size() const {
|
|
return current_size_;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline int RepeatedField<Element>::Capacity() const {
|
|
return total_size_;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
|
|
GOOGLE_DCHECK_LT(current_size_, total_size_);
|
|
elements()[current_size_++] = value;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
|
|
GOOGLE_DCHECK_LT(current_size_, total_size_);
|
|
return &elements()[current_size_++];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int elements) {
|
|
GOOGLE_DCHECK_GE(total_size_ - current_size_, elements)
|
|
<< total_size_ << ", " << current_size_;
|
|
// Warning: sometimes people call this when elements == 0 and
|
|
// total_size_ == 0. In this case the return pointer points to a zero size
|
|
// array (n == 0). Hence we can just use unsafe_elements(), because the user
|
|
// cannot dereference the pointer anyway.
|
|
Element* ret = unsafe_elements() + current_size_;
|
|
current_size_ += elements;
|
|
return ret;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
|
|
GOOGLE_DCHECK_GE(new_size, 0);
|
|
if (new_size > current_size_) {
|
|
Reserve(new_size);
|
|
std::fill(&elements()[current_size_], &elements()[new_size], value);
|
|
}
|
|
current_size_ = new_size;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline const Element& RepeatedField<Element>::Get(int index) const {
|
|
GOOGLE_DCHECK_GE(index, 0);
|
|
GOOGLE_DCHECK_LT(index, current_size_);
|
|
return elements()[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline const Element& RepeatedField<Element>::at(int index) const {
|
|
GOOGLE_CHECK_GE(index, 0);
|
|
GOOGLE_CHECK_LT(index, current_size_);
|
|
return elements()[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element& RepeatedField<Element>::at(int index) {
|
|
GOOGLE_CHECK_GE(index, 0);
|
|
GOOGLE_CHECK_LT(index, current_size_);
|
|
return elements()[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::Mutable(int index) {
|
|
GOOGLE_DCHECK_GE(index, 0);
|
|
GOOGLE_DCHECK_LT(index, current_size_);
|
|
return &elements()[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Set(int index, const Element& value) {
|
|
GOOGLE_DCHECK_GE(index, 0);
|
|
GOOGLE_DCHECK_LT(index, current_size_);
|
|
elements()[index] = value;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Add(const Element& value) {
|
|
uint32_t size = current_size_;
|
|
if (static_cast<int>(size) == total_size_) {
|
|
// value could reference an element of the array. Reserving new space will
|
|
// invalidate the reference. So we must make a copy first.
|
|
auto tmp = value;
|
|
Reserve(total_size_ + 1);
|
|
elements()[size] = std::move(tmp);
|
|
} else {
|
|
elements()[size] = value;
|
|
}
|
|
current_size_ = size + 1;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::Add() {
|
|
uint32_t size = current_size_;
|
|
if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1);
|
|
auto ptr = &elements()[size];
|
|
current_size_ = size + 1;
|
|
return ptr;
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter>
|
|
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
|
|
int reserve = internal::CalculateReserve(begin, end);
|
|
if (reserve != -1) {
|
|
if (reserve == 0) {
|
|
return;
|
|
}
|
|
|
|
Reserve(reserve + size());
|
|
// TODO(ckennelly): The compiler loses track of the buffer freshly
|
|
// allocated by Reserve() by the time we call elements, so it cannot
|
|
// guarantee that elements does not alias [begin(), end()).
|
|
//
|
|
// If restrict is available, annotating the pointer obtained from elements()
|
|
// causes this to lower to memcpy instead of memmove.
|
|
std::copy(begin, end, elements() + size());
|
|
current_size_ = reserve + size();
|
|
} else {
|
|
FastAdder fast_adder(this);
|
|
for (; begin != end; ++begin) fast_adder.Add(*begin);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::RemoveLast() {
|
|
GOOGLE_DCHECK_GT(current_size_, 0);
|
|
current_size_--;
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::ExtractSubrange(int start, int num,
|
|
Element* elements) {
|
|
GOOGLE_DCHECK_GE(start, 0);
|
|
GOOGLE_DCHECK_GE(num, 0);
|
|
GOOGLE_DCHECK_LE(start + num, this->current_size_);
|
|
|
|
// Save the values of the removed elements if requested.
|
|
if (elements != nullptr) {
|
|
for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start);
|
|
}
|
|
|
|
// Slide remaining elements down to fill the gap.
|
|
if (num > 0) {
|
|
for (int i = start + num; i < this->current_size_; ++i)
|
|
this->Set(i - num, this->Get(i));
|
|
this->Truncate(this->current_size_ - num);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Clear() {
|
|
current_size_ = 0;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
|
|
GOOGLE_DCHECK_NE(&other, this);
|
|
if (other.current_size_ != 0) {
|
|
int existing_size = size();
|
|
Reserve(existing_size + other.size());
|
|
AddNAlreadyReserved(other.size());
|
|
CopyArray(Mutable(existing_size), &other.Get(0), other.size());
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
|
|
if (&other == this) return;
|
|
Clear();
|
|
MergeFrom(other);
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter>
|
|
inline void RepeatedField<Element>::Assign(Iter begin, Iter end) {
|
|
Clear();
|
|
Add(begin, end);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
|
|
const_iterator position) {
|
|
return erase(position, position + 1);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
|
|
const_iterator first, const_iterator last) {
|
|
size_type first_offset = first - cbegin();
|
|
if (first != last) {
|
|
Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
|
|
}
|
|
return begin() + first_offset;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::mutable_data() {
|
|
return unsafe_elements();
|
|
}
|
|
|
|
template <typename Element>
|
|
inline const Element* RepeatedField<Element>::data() const {
|
|
return unsafe_elements();
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
|
|
GOOGLE_DCHECK(this != other);
|
|
|
|
// Swap all fields at once.
|
|
static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
|
|
"offsetof() requires standard layout before c++17");
|
|
internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
|
|
sizeof(this->arena_or_elements_) -
|
|
offsetof(RepeatedField, current_size_)>(
|
|
reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_),
|
|
reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_));
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::Swap(RepeatedField* other) {
|
|
if (this == other) return;
|
|
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
|
|
if (GetOwningArena() != nullptr &&
|
|
GetOwningArena() == other->GetOwningArena()) {
|
|
#else // PROTOBUF_FORCE_COPY_IN_SWAP
|
|
if (GetOwningArena() == other->GetOwningArena()) {
|
|
#endif // !PROTOBUF_FORCE_COPY_IN_SWAP
|
|
InternalSwap(other);
|
|
} else {
|
|
RepeatedField<Element> temp(other->GetOwningArena());
|
|
temp.MergeFrom(*this);
|
|
CopyFrom(*other);
|
|
other->UnsafeArenaSwap(&temp);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
|
|
if (this == other) return;
|
|
GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena());
|
|
InternalSwap(other);
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::SwapElements(int index1, int index2) {
|
|
using std::swap; // enable ADL with fallback
|
|
swap(elements()[index1], elements()[index2]);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator
|
|
RepeatedField<Element>::begin() {
|
|
return iterator(unsafe_elements());
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::begin() const {
|
|
return const_iterator(unsafe_elements());
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::cbegin() const {
|
|
return const_iterator(unsafe_elements());
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() {
|
|
return iterator(unsafe_elements() + current_size_);
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::end() const {
|
|
return const_iterator(unsafe_elements() + current_size_);
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::cend() const {
|
|
return const_iterator(unsafe_elements() + current_size_);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
|
|
return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
|
|
}
|
|
|
|
namespace internal {
|
|
// Returns the new size for a reserved field based on its 'total_size' and the
|
|
// requested 'new_size'. The result is clamped to the closed interval:
|
|
// [internal::kMinRepeatedFieldAllocationSize,
|
|
// std::numeric_limits<int>::max()]
|
|
// Requires:
|
|
// new_size > total_size &&
|
|
// (total_size == 0 ||
|
|
// total_size >= kRepeatedFieldLowerClampLimit)
|
|
template <typename T, int kRepHeaderSize>
|
|
inline int CalculateReserveSize(int total_size, int new_size) {
|
|
constexpr int lower_limit = RepeatedFieldLowerClampLimit<T, kRepHeaderSize>();
|
|
if (new_size < lower_limit) {
|
|
// Clamp to smallest allowed size.
|
|
return lower_limit;
|
|
}
|
|
constexpr int kMaxSizeBeforeClamp =
|
|
(std::numeric_limits<int>::max() - kRepHeaderSize) / 2;
|
|
if (PROTOBUF_PREDICT_FALSE(total_size > kMaxSizeBeforeClamp)) {
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
// We want to double the number of bytes, not the number of elements, to try
|
|
// to stay within power-of-two allocations.
|
|
// The allocation has kRepHeaderSize + sizeof(T) * capacity.
|
|
int doubled_size = 2 * total_size + kRepHeaderSize / sizeof(T);
|
|
return std::max(doubled_size, new_size);
|
|
}
|
|
} // namespace internal
|
|
|
|
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
|
|
// amount of code bloat.
|
|
template <typename Element>
|
|
void RepeatedField<Element>::Reserve(int new_size) {
|
|
if (total_size_ >= new_size) return;
|
|
Rep* old_rep = total_size_ > 0 ? rep() : nullptr;
|
|
Rep* new_rep;
|
|
Arena* arena = GetOwningArena();
|
|
|
|
new_size = internal::CalculateReserveSize<Element, kRepHeaderSize>(
|
|
total_size_, new_size);
|
|
|
|
GOOGLE_DCHECK_LE(
|
|
static_cast<size_t>(new_size),
|
|
(std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
|
|
<< "Requested size is too large to fit into size_t.";
|
|
size_t bytes =
|
|
kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
|
|
if (arena == nullptr) {
|
|
new_rep = static_cast<Rep*>(::operator new(bytes));
|
|
} else {
|
|
new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, bytes));
|
|
}
|
|
new_rep->arena = arena;
|
|
int old_total_size = total_size_;
|
|
// Already known: new_size >= internal::kMinRepeatedFieldAllocationSize
|
|
// Maintain invariant:
|
|
// total_size_ == 0 ||
|
|
// total_size_ >= internal::kMinRepeatedFieldAllocationSize
|
|
total_size_ = new_size;
|
|
arena_or_elements_ = new_rep->elements();
|
|
// Invoke placement-new on newly allocated elements. We shouldn't have to do
|
|
// this, since Element is supposed to be POD, but a previous version of this
|
|
// code allocated storage with "new Element[size]" and some code uses
|
|
// RepeatedField with non-POD types, relying on constructor invocation. If
|
|
// Element has a trivial constructor (e.g., int32_t), gcc (tested with -O2)
|
|
// completely removes this loop because the loop body is empty, so this has no
|
|
// effect unless its side-effects are required for correctness.
|
|
// Note that we do this before MoveArray() below because Element's copy
|
|
// assignment implementation will want an initialized instance first.
|
|
Element* e = &elements()[0];
|
|
Element* limit = e + total_size_;
|
|
for (; e < limit; e++) {
|
|
new (e) Element;
|
|
}
|
|
if (current_size_ > 0) {
|
|
MoveArray(&elements()[0], old_rep->elements(), current_size_);
|
|
}
|
|
|
|
// Likewise, we need to invoke destructors on the old array.
|
|
InternalDeallocate(old_rep, old_total_size, false);
|
|
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Truncate(int new_size) {
|
|
GOOGLE_DCHECK_LE(new_size, current_size_);
|
|
if (current_size_ > 0) {
|
|
current_size_ = new_size;
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::MoveArray(Element* to, Element* from,
|
|
int array_size) {
|
|
CopyArray(to, from, array_size);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from,
|
|
int array_size) {
|
|
internal::ElementCopier<Element>()(to, from, array_size);
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
template <typename Element, bool HasTrivialCopy>
|
|
void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to,
|
|
const Element* from,
|
|
int array_size) {
|
|
std::copy(from, from + array_size, to);
|
|
}
|
|
|
|
template <typename Element>
|
|
struct ElementCopier<Element, true> {
|
|
void operator()(Element* to, const Element* from, int array_size) {
|
|
memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
|
|
}
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// Iterators and helper functions that follow the spirit of the STL
|
|
// std::back_insert_iterator and std::back_inserter but are tailor-made
|
|
// for RepeatedField and RepeatedPtrField. Typical usage would be:
|
|
//
|
|
// std::copy(some_sequence.begin(), some_sequence.end(),
|
|
// RepeatedFieldBackInserter(proto.mutable_sequence()));
|
|
//
|
|
// Ported by johannes from util/gtl/proto-array-iterators.h
|
|
|
|
namespace internal {
|
|
|
|
// STL-like iterator implementation for RepeatedField. You should not
|
|
// refer to this class directly; use RepeatedField<T>::iterator instead.
|
|
//
|
|
// Note: All of the iterator operators *must* be inlined to avoid performance
|
|
// regressions. This is caused by the extern template declarations below (which
|
|
// are required because of the RepeatedField extern template declarations). If
|
|
// any of these functions aren't explicitly inlined (e.g. defined in the class),
|
|
// the compiler isn't allowed to inline them.
|
|
template <typename Element>
|
|
class RepeatedIterator {
|
|
public:
|
|
using iterator_category = std::random_access_iterator_tag;
|
|
// Note: remove_const is necessary for std::partial_sum, which uses value_type
|
|
// to determine the summation variable type.
|
|
using value_type = typename std::remove_const<Element>::type;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = Element*;
|
|
using reference = Element&;
|
|
|
|
constexpr RepeatedIterator() noexcept : it_(nullptr) {}
|
|
|
|
// Allows "upcasting" from RepeatedIterator<T**> to
|
|
// RepeatedIterator<const T*const*>.
|
|
template <typename OtherElement,
|
|
typename std::enable_if<std::is_convertible<
|
|
OtherElement*, pointer>::value>::type* = nullptr>
|
|
constexpr RepeatedIterator(
|
|
const RepeatedIterator<OtherElement>& other) noexcept
|
|
: it_(other.it_) {}
|
|
|
|
// dereferenceable
|
|
constexpr reference operator*() const noexcept { return *it_; }
|
|
constexpr pointer operator->() const noexcept { return it_; }
|
|
|
|
private:
|
|
// Helper alias to hide the internal type.
|
|
using iterator = RepeatedIterator<Element>;
|
|
|
|
public:
|
|
// {inc,dec}rementable
|
|
iterator& operator++() noexcept {
|
|
++it_;
|
|
return *this;
|
|
}
|
|
iterator operator++(int) noexcept { return iterator(it_++); }
|
|
iterator& operator--() noexcept {
|
|
--it_;
|
|
return *this;
|
|
}
|
|
iterator operator--(int) noexcept { return iterator(it_--); }
|
|
|
|
// equality_comparable
|
|
friend constexpr bool operator==(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ == y.it_;
|
|
}
|
|
friend constexpr bool operator!=(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ != y.it_;
|
|
}
|
|
|
|
// less_than_comparable
|
|
friend constexpr bool operator<(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ < y.it_;
|
|
}
|
|
friend constexpr bool operator<=(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ <= y.it_;
|
|
}
|
|
friend constexpr bool operator>(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ > y.it_;
|
|
}
|
|
friend constexpr bool operator>=(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ >= y.it_;
|
|
}
|
|
|
|
// addable, subtractable
|
|
iterator& operator+=(difference_type d) noexcept {
|
|
it_ += d;
|
|
return *this;
|
|
}
|
|
constexpr iterator operator+(difference_type d) const noexcept {
|
|
return iterator(it_ + d);
|
|
}
|
|
friend constexpr iterator operator+(const difference_type d,
|
|
iterator it) noexcept {
|
|
return it + d;
|
|
}
|
|
|
|
iterator& operator-=(difference_type d) noexcept {
|
|
it_ -= d;
|
|
return *this;
|
|
}
|
|
iterator constexpr operator-(difference_type d) const noexcept {
|
|
return iterator(it_ - d);
|
|
}
|
|
|
|
// indexable
|
|
constexpr reference operator[](difference_type d) const noexcept {
|
|
return it_[d];
|
|
}
|
|
|
|
// random access iterator
|
|
friend constexpr difference_type operator-(iterator it1,
|
|
iterator it2) noexcept {
|
|
return it1.it_ - it2.it_;
|
|
}
|
|
|
|
private:
|
|
template <typename OtherElement>
|
|
friend class RepeatedIterator;
|
|
|
|
// Allow construction from RepeatedField.
|
|
friend class RepeatedField<value_type>;
|
|
explicit RepeatedIterator(Element* it) noexcept : it_(it) {}
|
|
|
|
// The internal iterator.
|
|
Element* it_;
|
|
};
|
|
|
|
// A back inserter for RepeatedField objects.
|
|
template <typename T>
|
|
class RepeatedFieldBackInsertIterator {
|
|
public:
|
|
using iterator_category = std::output_iterator_tag;
|
|
using value_type = T;
|
|
using pointer = void;
|
|
using reference = void;
|
|
using difference_type = std::ptrdiff_t;
|
|
|
|
explicit RepeatedFieldBackInsertIterator(
|
|
RepeatedField<T>* const mutable_field)
|
|
: field_(mutable_field) {}
|
|
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
|
|
field_->Add(value);
|
|
return *this;
|
|
}
|
|
RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
|
|
RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
|
|
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
RepeatedField<T>* field_;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// Provides a back insert iterator for RepeatedField instances,
|
|
// similar to std::back_inserter().
|
|
template <typename T>
|
|
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
|
|
RepeatedField<T>* const mutable_field) {
|
|
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
|
|
}
|
|
|
|
// Extern declarations of common instantiations to reduce library bloat.
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>;
|
|
|
|
namespace internal {
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<bool>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
|
|
RepeatedIterator<int32_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
|
|
RepeatedIterator<uint32_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
|
|
RepeatedIterator<int64_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
|
|
RepeatedIterator<uint64_t>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<float>;
|
|
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<double>;
|
|
} // namespace internal
|
|
|
|
} // namespace protobuf
|
|
} // namespace google
|
|
|
|
#include <google/protobuf/port_undef.inc>
|
|
|
|
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__
|