403 lines
15 KiB
C++
403 lines
15 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// A StringPiece points to part or all of a string, Cord, double-quoted string
|
|
// literal, or other string-like object. A StringPiece does *not* own the
|
|
// string to which it points. A StringPiece is not null-terminated.
|
|
//
|
|
// You can use StringPiece as a function or method parameter. A StringPiece
|
|
// parameter can receive a double-quoted string literal argument, a "const
|
|
// char*" argument, a string argument, or a StringPiece argument with no data
|
|
// copying. Systematic use of StringPiece for arguments reduces data
|
|
// copies and strlen() calls.
|
|
//
|
|
// Prefer passing StringPieces by value:
|
|
// void MyFunction(StringPiece arg);
|
|
// If circumstances require, you may also pass by const reference:
|
|
// void MyFunction(const StringPiece& arg); // not preferred
|
|
// Both of these have the same lifetime semantics. Passing by value
|
|
// generates slightly smaller code. For more discussion, see the thread
|
|
// go/stringpiecebyvalue on c-users.
|
|
//
|
|
// StringPiece is also suitable for local variables if you know that
|
|
// the lifetime of the underlying object is longer than the lifetime
|
|
// of your StringPiece variable.
|
|
//
|
|
// Beware of binding a StringPiece to a temporary:
|
|
// StringPiece sp = obj.MethodReturningString(); // BAD: lifetime problem
|
|
//
|
|
// This code is okay:
|
|
// string str = obj.MethodReturningString(); // str owns its contents
|
|
// StringPiece sp(str); // GOOD, because str outlives sp
|
|
//
|
|
// StringPiece is sometimes a poor choice for a return value and usually a poor
|
|
// choice for a data member. If you do use a StringPiece this way, it is your
|
|
// responsibility to ensure that the object pointed to by the StringPiece
|
|
// outlives the StringPiece.
|
|
//
|
|
// A StringPiece may represent just part of a string; thus the name "Piece".
|
|
// For example, when splitting a string, vector<StringPiece> is a natural data
|
|
// type for the output. For another example, a Cord is a non-contiguous,
|
|
// potentially very long string-like object. The Cord class has an interface
|
|
// that iteratively provides StringPiece objects that point to the
|
|
// successive pieces of a Cord object.
|
|
//
|
|
// A StringPiece is not null-terminated. If you write code that scans a
|
|
// StringPiece, you must check its length before reading any characters.
|
|
// Common idioms that work on null-terminated strings do not work on
|
|
// StringPiece objects.
|
|
//
|
|
// There are several ways to create a null StringPiece:
|
|
// StringPiece()
|
|
// StringPiece(nullptr)
|
|
// StringPiece(nullptr, 0)
|
|
// For all of the above, sp.data() == nullptr, sp.length() == 0,
|
|
// and sp.empty() == true. Also, if you create a StringPiece with
|
|
// a non-null pointer then sp.data() != nullptr. Once created,
|
|
// sp.data() will stay either nullptr or not-nullptr, except if you call
|
|
// sp.clear() or sp.set().
|
|
//
|
|
// Thus, you can use StringPiece(nullptr) to signal an out-of-band value
|
|
// that is different from other StringPiece values. This is similar
|
|
// to the way that const char* p1 = nullptr; is different from
|
|
// const char* p2 = "";.
|
|
//
|
|
// There are many ways to create an empty StringPiece:
|
|
// StringPiece()
|
|
// StringPiece(nullptr)
|
|
// StringPiece(nullptr, 0)
|
|
// StringPiece("")
|
|
// StringPiece("", 0)
|
|
// StringPiece("abcdef", 0)
|
|
// StringPiece("abcdef"+6, 0)
|
|
// For all of the above, sp.length() will be 0 and sp.empty() will be true.
|
|
// For some empty StringPiece values, sp.data() will be nullptr.
|
|
// For some empty StringPiece values, sp.data() will not be nullptr.
|
|
//
|
|
// Be careful not to confuse: null StringPiece and empty StringPiece.
|
|
// The set of empty StringPieces properly includes the set of null StringPieces.
|
|
// That is, every null StringPiece is an empty StringPiece,
|
|
// but some non-null StringPieces are empty Stringpieces too.
|
|
//
|
|
// All empty StringPiece values compare equal to each other.
|
|
// Even a null StringPieces compares equal to a non-null empty StringPiece:
|
|
// StringPiece() == StringPiece("", 0)
|
|
// StringPiece(nullptr) == StringPiece("abc", 0)
|
|
// StringPiece(nullptr, 0) == StringPiece("abcdef"+6, 0)
|
|
//
|
|
// Look carefully at this example:
|
|
// StringPiece("") == nullptr
|
|
// True or false? TRUE, because StringPiece::operator== converts
|
|
// the right-hand side from nullptr to StringPiece(nullptr),
|
|
// and then compares two zero-length spans of characters.
|
|
// However, we are working to make this example produce a compile error.
|
|
//
|
|
// Suppose you want to write:
|
|
// bool TestWhat?(StringPiece sp) { return sp == nullptr; } // BAD
|
|
// Do not do that. Write one of these instead:
|
|
// bool TestNull(StringPiece sp) { return sp.data() == nullptr; }
|
|
// bool TestEmpty(StringPiece sp) { return sp.empty(); }
|
|
// The intent of TestWhat? is unclear. Did you mean TestNull or TestEmpty?
|
|
// Right now, TestWhat? behaves likes TestEmpty.
|
|
// We are working to make TestWhat? produce a compile error.
|
|
// TestNull is good to test for an out-of-band signal.
|
|
// TestEmpty is good to test for an empty StringPiece.
|
|
//
|
|
// Caveats (again):
|
|
// (1) The lifetime of the pointed-to string (or piece of a string)
|
|
// must be longer than the lifetime of the StringPiece.
|
|
// (2) There may or may not be a '\0' character after the end of
|
|
// StringPiece data.
|
|
// (3) A null StringPiece is empty.
|
|
// An empty StringPiece may or may not be a null StringPiece.
|
|
|
|
#ifndef GOOGLE_PROTOBUF_STUBS_STRINGPIECE_H_
|
|
#define GOOGLE_PROTOBUF_STUBS_STRINGPIECE_H_
|
|
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <iosfwd>
|
|
#include <limits>
|
|
#include <string>
|
|
|
|
#if defined(__cpp_lib_string_view)
|
|
#include <string_view>
|
|
#endif
|
|
|
|
#include <google/protobuf/stubs/hash.h>
|
|
|
|
#include <google/protobuf/port_def.inc>
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
namespace stringpiece_internal {
|
|
|
|
class PROTOBUF_EXPORT StringPiece {
|
|
public:
|
|
using traits_type = std::char_traits<char>;
|
|
using value_type = char;
|
|
using pointer = char*;
|
|
using const_pointer = const char*;
|
|
using reference = char&;
|
|
using const_reference = const char&;
|
|
using const_iterator = const char*;
|
|
using iterator = const_iterator;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
using reverse_iterator = const_reverse_iterator;
|
|
using size_type = size_t;
|
|
using difference_type = std::ptrdiff_t;
|
|
|
|
private:
|
|
const char* ptr_;
|
|
size_type length_;
|
|
|
|
static constexpr size_type kMaxSize =
|
|
(std::numeric_limits<difference_type>::max)();
|
|
|
|
static size_type CheckSize(size_type size) {
|
|
#if !defined(NDEBUG) || defined(_FORTIFY_SOURCE) && _FORTIFY_SOURCE > 0
|
|
if (PROTOBUF_PREDICT_FALSE(size > kMaxSize)) {
|
|
// Some people grep for this message in logs
|
|
// so take care if you ever change it.
|
|
LogFatalSizeTooBig(size, "string length exceeds max size");
|
|
}
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
// Out-of-line error path.
|
|
static void LogFatalSizeTooBig(size_type size, const char* details);
|
|
|
|
public:
|
|
// We provide non-explicit singleton constructors so users can pass
|
|
// in a "const char*" or a "string" wherever a "StringPiece" is
|
|
// expected.
|
|
//
|
|
// Style guide exception granted:
|
|
// http://goto/style-guide-exception-20978288
|
|
StringPiece() : ptr_(nullptr), length_(0) {}
|
|
|
|
StringPiece(const char* str) // NOLINT(runtime/explicit)
|
|
: ptr_(str), length_(0) {
|
|
if (str != nullptr) {
|
|
length_ = CheckSize(strlen(str));
|
|
}
|
|
}
|
|
|
|
template <class Allocator>
|
|
StringPiece( // NOLINT(runtime/explicit)
|
|
const std::basic_string<char, std::char_traits<char>, Allocator>& str)
|
|
: ptr_(str.data()), length_(0) {
|
|
length_ = CheckSize(str.size());
|
|
}
|
|
|
|
#if defined(__cpp_lib_string_view)
|
|
StringPiece( // NOLINT(runtime/explicit)
|
|
std::string_view str)
|
|
: ptr_(str.data()), length_(0) {
|
|
length_ = CheckSize(str.size());
|
|
}
|
|
#endif
|
|
|
|
StringPiece(const char* offset, size_type len)
|
|
: ptr_(offset), length_(CheckSize(len)) {}
|
|
|
|
// data() may return a pointer to a buffer with embedded NULs, and the
|
|
// returned buffer may or may not be null terminated. Therefore it is
|
|
// typically a mistake to pass data() to a routine that expects a NUL
|
|
// terminated string.
|
|
const_pointer data() const { return ptr_; }
|
|
size_type size() const { return length_; }
|
|
size_type length() const { return length_; }
|
|
bool empty() const { return length_ == 0; }
|
|
|
|
char operator[](size_type i) const {
|
|
assert(i < length_);
|
|
return ptr_[i];
|
|
}
|
|
|
|
void remove_prefix(size_type n) {
|
|
assert(length_ >= n);
|
|
ptr_ += n;
|
|
length_ -= n;
|
|
}
|
|
|
|
void remove_suffix(size_type n) {
|
|
assert(length_ >= n);
|
|
length_ -= n;
|
|
}
|
|
|
|
// returns {-1, 0, 1}
|
|
int compare(StringPiece x) const {
|
|
size_type min_size = length_ < x.length_ ? length_ : x.length_;
|
|
int r = memcmp(ptr_, x.ptr_, static_cast<size_t>(min_size));
|
|
if (r < 0) return -1;
|
|
if (r > 0) return 1;
|
|
if (length_ < x.length_) return -1;
|
|
if (length_ > x.length_) return 1;
|
|
return 0;
|
|
}
|
|
|
|
std::string as_string() const { return ToString(); }
|
|
// We also define ToString() here, since many other string-like
|
|
// interfaces name the routine that converts to a C++ string
|
|
// "ToString", and it's confusing to have the method that does that
|
|
// for a StringPiece be called "as_string()". We also leave the
|
|
// "as_string()" method defined here for existing code.
|
|
std::string ToString() const {
|
|
if (ptr_ == nullptr) return "";
|
|
return std::string(data(), static_cast<size_type>(size()));
|
|
}
|
|
|
|
explicit operator std::string() const { return ToString(); }
|
|
|
|
void CopyToString(std::string* target) const;
|
|
void AppendToString(std::string* target) const;
|
|
|
|
bool starts_with(StringPiece x) const {
|
|
return (length_ >= x.length_) &&
|
|
(memcmp(ptr_, x.ptr_, static_cast<size_t>(x.length_)) == 0);
|
|
}
|
|
|
|
bool ends_with(StringPiece x) const {
|
|
return ((length_ >= x.length_) &&
|
|
(memcmp(ptr_ + (length_-x.length_), x.ptr_,
|
|
static_cast<size_t>(x.length_)) == 0));
|
|
}
|
|
|
|
// Checks whether StringPiece starts with x and if so advances the beginning
|
|
// of it to past the match. It's basically a shortcut for starts_with
|
|
// followed by remove_prefix.
|
|
bool Consume(StringPiece x);
|
|
// Like above but for the end of the string.
|
|
bool ConsumeFromEnd(StringPiece x);
|
|
|
|
// standard STL container boilerplate
|
|
static const size_type npos;
|
|
const_iterator begin() const { return ptr_; }
|
|
const_iterator end() const { return ptr_ + length_; }
|
|
const_reverse_iterator rbegin() const {
|
|
return const_reverse_iterator(ptr_ + length_);
|
|
}
|
|
const_reverse_iterator rend() const {
|
|
return const_reverse_iterator(ptr_);
|
|
}
|
|
size_type max_size() const { return length_; }
|
|
size_type capacity() const { return length_; }
|
|
|
|
// cpplint.py emits a false positive [build/include_what_you_use]
|
|
size_type copy(char* buf, size_type n, size_type pos = 0) const; // NOLINT
|
|
|
|
bool contains(StringPiece s) const;
|
|
|
|
size_type find(StringPiece s, size_type pos = 0) const;
|
|
size_type find(char c, size_type pos = 0) const;
|
|
size_type rfind(StringPiece s, size_type pos = npos) const;
|
|
size_type rfind(char c, size_type pos = npos) const;
|
|
|
|
size_type find_first_of(StringPiece s, size_type pos = 0) const;
|
|
size_type find_first_of(char c, size_type pos = 0) const {
|
|
return find(c, pos);
|
|
}
|
|
size_type find_first_not_of(StringPiece s, size_type pos = 0) const;
|
|
size_type find_first_not_of(char c, size_type pos = 0) const;
|
|
size_type find_last_of(StringPiece s, size_type pos = npos) const;
|
|
size_type find_last_of(char c, size_type pos = npos) const {
|
|
return rfind(c, pos);
|
|
}
|
|
size_type find_last_not_of(StringPiece s, size_type pos = npos) const;
|
|
size_type find_last_not_of(char c, size_type pos = npos) const;
|
|
|
|
StringPiece substr(size_type pos, size_type n = npos) const;
|
|
};
|
|
|
|
// This large function is defined inline so that in a fairly common case where
|
|
// one of the arguments is a literal, the compiler can elide a lot of the
|
|
// following comparisons.
|
|
inline bool operator==(StringPiece x, StringPiece y) {
|
|
StringPiece::size_type len = x.size();
|
|
if (len != y.size()) {
|
|
return false;
|
|
}
|
|
|
|
return x.data() == y.data() || len <= 0 ||
|
|
memcmp(x.data(), y.data(), static_cast<size_t>(len)) == 0;
|
|
}
|
|
|
|
inline bool operator!=(StringPiece x, StringPiece y) {
|
|
return !(x == y);
|
|
}
|
|
|
|
inline bool operator<(StringPiece x, StringPiece y) {
|
|
const StringPiece::size_type min_size =
|
|
x.size() < y.size() ? x.size() : y.size();
|
|
const int r = memcmp(x.data(), y.data(), static_cast<size_t>(min_size));
|
|
return (r < 0) || (r == 0 && x.size() < y.size());
|
|
}
|
|
|
|
inline bool operator>(StringPiece x, StringPiece y) {
|
|
return y < x;
|
|
}
|
|
|
|
inline bool operator<=(StringPiece x, StringPiece y) {
|
|
return !(x > y);
|
|
}
|
|
|
|
inline bool operator>=(StringPiece x, StringPiece y) {
|
|
return !(x < y);
|
|
}
|
|
|
|
// allow StringPiece to be logged
|
|
extern std::ostream& operator<<(std::ostream& o, StringPiece piece);
|
|
|
|
} // namespace stringpiece_internal
|
|
|
|
using ::google::protobuf::stringpiece_internal::StringPiece;
|
|
|
|
} // namespace protobuf
|
|
} // namespace google
|
|
|
|
GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_START
|
|
template<> struct hash<StringPiece> {
|
|
size_t operator()(const StringPiece& s) const {
|
|
size_t result = 0;
|
|
for (const char *str = s.data(), *end = str + s.size(); str < end; str++) {
|
|
result = 5 * result + static_cast<size_t>(*str);
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_END
|
|
|
|
#include <google/protobuf/port_undef.inc>
|
|
|
|
#endif // STRINGS_STRINGPIECE_H_
|