3RNN/Lib/site-packages/tensorflow/python/autograph/impl/api.py
2024-05-26 19:49:15 +02:00

950 lines
32 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This module contains the user- and codegen-facing API for AutoGraph."""
import functools
import importlib
import inspect
import os
import sys
import textwrap
import traceback
from tensorflow.python.autograph import operators
from tensorflow.python.autograph import utils
from tensorflow.python.autograph.converters import asserts
from tensorflow.python.autograph.converters import break_statements
from tensorflow.python.autograph.converters import call_trees
from tensorflow.python.autograph.converters import conditional_expressions
from tensorflow.python.autograph.converters import continue_statements
from tensorflow.python.autograph.converters import control_flow
from tensorflow.python.autograph.converters import directives
from tensorflow.python.autograph.converters import functions
from tensorflow.python.autograph.converters import lists
from tensorflow.python.autograph.converters import logical_expressions
from tensorflow.python.autograph.converters import return_statements
from tensorflow.python.autograph.converters import slices
from tensorflow.python.autograph.converters import variables
from tensorflow.python.autograph.core import ag_ctx
from tensorflow.python.autograph.core import converter
from tensorflow.python.autograph.core import function_wrappers
from tensorflow.python.autograph.core import unsupported_features_checker
from tensorflow.python.autograph.impl import conversion
from tensorflow.python.autograph.lang import special_functions
from tensorflow.python.autograph.operators import py_builtins
from tensorflow.python.autograph.pyct import anno
from tensorflow.python.autograph.pyct import cfg
from tensorflow.python.autograph.pyct import error_utils
from tensorflow.python.autograph.pyct import errors
from tensorflow.python.autograph.pyct import inspect_utils
from tensorflow.python.autograph.pyct import origin_info
from tensorflow.python.autograph.pyct import qual_names
from tensorflow.python.autograph.pyct import transpiler
from tensorflow.python.autograph.pyct.static_analysis import activity
from tensorflow.python.autograph.pyct.static_analysis import reaching_definitions
from tensorflow.python.autograph.utils import ag_logging as logging
from tensorflow.python.eager.polymorphic_function import tf_method_target
from tensorflow.python.framework import errors_impl
from tensorflow.python.util import tf_decorator
from tensorflow.python.util import tf_inspect
from tensorflow.python.util import tf_stack
from tensorflow.python.util.tf_export import tf_export
def is_autograph_strict_conversion_mode():
return int(os.environ.get('AUTOGRAPH_STRICT_CONVERSION', '0')) > 0
#
# Error handling
#
# TODO(mdan): Export this symbol.
class AutoGraphError(errors.PyCTError):
"""Base class for all AutoGraph exceptions."""
pass
class ConversionError(AutoGraphError):
"""Raised during the conversion process."""
pass
class StagingError(AutoGraphError):
"""Raised during the staging (i.e. Python execution) of converted code."""
pass
class _ErrorMetadata(error_utils.ErrorMetadataBase):
"""AutoGraph-specific error metadata. See base class."""
def create_exception(self, source_error):
preferred_type = type(source_error)
if issubclass(preferred_type, errors_impl.OpError):
# Best-effort unpacking of OpError exceptions.
# TODO(mdan): Use a mechanism that is more future-proof.
init_argspec = tf_inspect.getfullargspec(preferred_type.__init__)
message = self.get_message()
init_args = tuple(init_argspec.args)
# At the time of this writing, TF errors either take 3 or 4 arguments,
# the argument '*args' may or may not be used.
if init_args == ('self', 'node_def', 'op', 'message'):
return preferred_type(source_error.node_def, source_error.op, message,
source_error.experimental_payloads)
elif preferred_type in (errors.PyCTError, AutoGraphError, ConversionError,
StagingError, errors_impl.InaccessibleTensorError,
errors_impl.OperatorNotAllowedInGraphError):
return preferred_type(self.get_message())
exc = super(_ErrorMetadata, self).create_exception(source_error)
if exc is not None:
return exc
# Note: While changing an error's message property to change the message it
# displays will probably work a lot of times, there is no standard way in
# Python to do that. The safest way is therefore to create a new exception.
# For user defined exceptions, we could define an interface that allowed
# them to work under this mechanism.
return StagingError(self.get_message())
def _attach_error_metadata(e, f):
"""Augments an error with the metadata necessary for rewrite."""
if hasattr(e, 'ag_pass_through'):
return
metadata = getattr(e, 'ag_error_metadata', None)
source_map = f.ag_source_map
if metadata is None:
logging.log(1, 'Caught error in user callable %s', f, exc_info=True)
message = '{}: {}'.format(e.__class__.__name__, e)
else:
message = None
cause_tb = traceback.extract_tb(sys.exc_info()[2])[1:]
e.ag_error_metadata = _ErrorMetadata(cause_tb, metadata, message, source_map,
__file__)
class StackTraceMapper(tf_stack.StackTraceMapper):
"""Remaps generated code to code it originated from."""
def __init__(self, converted_fn):
super().__init__()
self._source_map = converted_fn.ag_source_map
# This may be called repeatedly: once on entry, by the superclass, then by
# each child context manager.
self._cached_map = None
def get_effective_source_map(self):
if self._cached_map is not None:
return self._cached_map
parent_map = self.parent.get_effective_source_map()
effective_source_map = {}
for loc, origin in self._source_map.items():
effective_source_map[(loc.filename, loc.lineno)] = (origin.loc.filename,
origin.loc.lineno,
origin.function_name)
for key, value in parent_map.items():
filename, lineno, _ = value
value_loc = origin_info.LineLocation(filename=filename, lineno=lineno)
if value_loc in self._source_map:
origin = self._source_map[value_loc]
effective_source_map[key] = (origin.loc.filename, origin.loc.lineno,
origin.function_name)
else:
effective_source_map[key] = value
self._cached_map = effective_source_map
return effective_source_map
#
# Actual source code transformation
#
class PyToTF(transpiler.PyToPy):
"""The TensorFlow AutoGraph transformer."""
def __init__(self):
super(PyToTF, self).__init__()
self._extra_locals = None
def get_transformed_name(self, node):
return 'tf__' + super(PyToTF, self).get_transformed_name(node)
def get_extra_locals(self):
if self._extra_locals is None:
# TODO(mdan): Move into core or replace with an actual importable module.
# Craft a module that exposes the external API as well as certain
# internal modules.
module_spec = importlib.machinery.ModuleSpec('autograph', None)
ag_internal = importlib.util.module_from_spec(module_spec)
ag_internal.__dict__.update(inspect.getmodule(PyToTF).__dict__)
ag_internal.ConversionOptions = converter.ConversionOptions
ag_internal.STD = converter.STANDARD_OPTIONS
ag_internal.Feature = converter.Feature
ag_internal.utils = utils
ag_internal.FunctionScope = function_wrappers.FunctionScope
ag_internal.with_function_scope = function_wrappers.with_function_scope
# TODO(mdan): Add safeguards against name clashes.
# We don't want to create a submodule because we want the operators to be
# accessible as ag__.<operator>
ag_internal.__dict__.update(special_functions.__dict__)
ag_internal.__dict__.update(operators.__dict__)
self._extra_locals = {'ag__': ag_internal}
return self._extra_locals
def get_caching_key(self, ctx):
return ctx.options
def initial_analysis(self, node, ctx):
graphs = cfg.build(node)
node = qual_names.resolve(node)
node = activity.resolve(node, ctx, None)
node = reaching_definitions.resolve(node, ctx, graphs)
anno.dup(
node,
{
anno.Static.DEFINITIONS: anno.Static.ORIG_DEFINITIONS,
},
)
return node
def transform_ast(self, node, ctx):
unsupported_features_checker.verify(node)
node = self.initial_analysis(node, ctx)
node = functions.transform(node, ctx)
node = directives.transform(node, ctx)
node = break_statements.transform(node, ctx)
if ctx.user.options.uses(converter.Feature.ASSERT_STATEMENTS):
node = asserts.transform(node, ctx)
# Note: sequencing continue canonicalization before for loop one avoids
# dealing with the extra loop increment operation that the for
# canonicalization creates.
node = continue_statements.transform(node, ctx)
node = return_statements.transform(node, ctx)
if ctx.user.options.uses(converter.Feature.LISTS):
node = lists.transform(node, ctx)
node = slices.transform(node, ctx)
node = call_trees.transform(node, ctx)
node = control_flow.transform(node, ctx)
node = conditional_expressions.transform(node, ctx)
node = logical_expressions.transform(node, ctx)
node = variables.transform(node, ctx)
return node
def _convert_actual(entity, program_ctx):
"""Applies AutoGraph to entity."""
# TODO(mdan): Put these extra fields inside __autograph_info__.
if not hasattr(entity, '__code__'):
raise ValueError('Cannot apply autograph to a function that doesn\'t '
'expose a __code__ object. If this is a @tf.function,'
' try passing f.python_function instead.')
transformed, module, source_map = _TRANSPILER.transform(entity, program_ctx)
assert not hasattr(transformed, 'ag_module')
assert not hasattr(transformed, 'ag_source_map')
transformed.ag_module = module
transformed.ag_source_map = source_map
return transformed
#
# Generated code support
#
def autograph_artifact(entity, extras=None):
if inspect.ismethod(entity):
setattr(entity.__func__, 'autograph_info__', extras)
else:
setattr(entity, 'autograph_info__', extras)
return entity
def is_autograph_artifact(entity):
return hasattr(entity, 'autograph_info__')
def converted_call(f, args, kwargs, caller_fn_scope=None, options=None):
"""Converts a function call inline.
For internal use only.
Note: The argument list is optimized for readability of generated code, which
may look like this:
ag__.converted_call(f, (arg1, arg2), None, fscope)
ag__.converted_call(f, (), dict(arg1=val1, **kwargs), fscope)
ag__.converted_call(f, (arg1, arg2) + varargs, dict(**kwargs), lscope)
Args:
f: The function to convert.
args: Tuple, the original positional arguments of f
kwargs: Optional[Dict], the original keyword arguments of f
caller_fn_scope: Optional[function_wrappers.FunctionScope], the function
scope of the converted function in which this call was originally made.
options: Optional[converter.ConversionOptions], conversion options. If not
specified, the value of caller_fn_scope.callopts is used. Either options
or caller_fn_scope must be present.
Returns:
Any, the result of executing a possibly-converted `f` with the given
arguments.
"""
logging.log(1, 'Converted call: %s\n args: %s\n kwargs: %s\n', f, args,
kwargs)
if options is None:
if caller_fn_scope is None:
raise ValueError('either caller_fn_scope or options must have a value')
options = caller_fn_scope.callopts
if conversion.is_in_allowlist_cache(f, options):
logging.log(2, 'Allowlisted %s: from cache', f)
return _call_unconverted(f, args, kwargs, options, False)
if ag_ctx.control_status_ctx().status == ag_ctx.Status.DISABLED:
logging.log(2, 'Allowlisted: %s: AutoGraph is disabled in context', f)
return _call_unconverted(f, args, kwargs, options, False)
if is_autograph_artifact(f):
logging.log(2, 'Permanently allowed: %s: AutoGraph artifact', f)
return _call_unconverted(f, args, kwargs, options)
# If this is a partial, unwrap it and redo all the checks.
if isinstance(f, functools.partial):
new_kwargs = {}
if f.keywords is not None:
# Use copy to avoid mutating the underlying keywords.
new_kwargs = f.keywords.copy()
if kwargs is not None:
new_kwargs.update(kwargs)
new_args = f.args + args
logging.log(3, 'Forwarding call of partial %s with\n%s\n%s\n', f, new_args,
new_kwargs)
return converted_call(
f.func,
new_args,
new_kwargs,
caller_fn_scope=caller_fn_scope,
options=options)
if inspect_utils.isbuiltin(f):
if f is eval:
return py_builtins.eval_in_original_context(f, args, caller_fn_scope)
if f is super:
return py_builtins.super_in_original_context(f, args, caller_fn_scope)
if f is globals:
return py_builtins.globals_in_original_context(caller_fn_scope)
if f is locals:
return py_builtins.locals_in_original_context(caller_fn_scope)
if kwargs:
return py_builtins.overload_of(f)(*args, **kwargs)
else:
return py_builtins.overload_of(f)(*args)
if conversion.is_unsupported(f):
return _call_unconverted(f, args, kwargs, options)
if not options.user_requested and conversion.is_allowlisted(f):
return _call_unconverted(f, args, kwargs, options)
# internal_convert_user_code is for example turned off when issuing a dynamic
# call conversion from generated code while in nonrecursive mode. In that
# case we evidently don't want to recurse, but we still have to convert
# things like builtins.
if not options.internal_convert_user_code:
return _call_unconverted(f, args, kwargs, options)
try:
if inspect.ismethod(f) or inspect.isfunction(f):
target_entity = f
effective_args = args
f_self = getattr(f, '__self__', None)
if f_self is not None:
if isinstance(f_self, tf_method_target.TfMethodTarget):
f_self = f_self.target
effective_args = (f_self,) + effective_args
elif hasattr(f, '__class__') and hasattr(f.__class__, '__call__'):
# Callable objects. Dunder methods have special lookup rules, see:
# https://docs.python.org/3/reference/datamodel.html#specialnames
# TODO(mdan): Recurse into converted_call to simplify other verifications.
# This should be handled in the same way as partials.
target_entity = f.__class__.__call__
effective_args = (f,) + args
else:
target_entity = f
raise NotImplementedError('unknown callable type "%s"' % type(f))
except Exception as e: # pylint:disable=broad-except
logging.log(1, 'Error transforming entity %s', target_entity, exc_info=True)
if is_autograph_strict_conversion_mode():
raise
return _fall_back_unconverted(f, args, kwargs, options, e)
if not hasattr(target_entity, '__code__'):
logging.log(2, 'Permanently allowed: %s: native binding', target_entity)
return _call_unconverted(f, args, kwargs, options)
elif (hasattr(target_entity.__code__, 'co_filename') and
target_entity.__code__.co_filename == '<string>'):
# TODO(mdan): __globals__['txt'] might work in Py3.
logging.log(2, 'Permanently allowed: %s: dynamic code (exec?)',
target_entity)
return _call_unconverted(f, args, kwargs, options)
try:
program_ctx = converter.ProgramContext(options=options)
converted_f = _convert_actual(target_entity, program_ctx)
if logging.has_verbosity(2):
_log_callargs(converted_f, effective_args, kwargs)
except Exception as e: # pylint:disable=broad-except
logging.log(1, 'Error transforming entity %s', target_entity, exc_info=True)
if is_autograph_strict_conversion_mode():
raise
return _fall_back_unconverted(f, args, kwargs, options, e)
with StackTraceMapper(converted_f), tf_stack.CurrentModuleFilter():
try:
if kwargs is not None:
result = converted_f(*effective_args, **kwargs)
else:
result = converted_f(*effective_args)
except Exception as e:
_attach_error_metadata(e, converted_f)
raise
return result
def _call_unconverted(f, args, kwargs, options, update_cache=True):
"""Calls the original function without converting with AutoGraph."""
if update_cache:
conversion.cache_allowlisted(f, options)
if (inspect.ismethod(f) and
isinstance(f.__self__, tf_method_target.TfMethodTarget)):
return f.__self__.call(args, kwargs)
if kwargs is not None:
return f(*args, **kwargs)
return f(*args)
def _fall_back_unconverted(f, args, kwargs, options, exc):
"""Falls back to calling the function unconverted, in case of error."""
# TODO(mdan): Consider adding an internal metric.
warning_template = (
'AutoGraph could not transform %s and will run it as-is.\n'
'%s'
'Cause: %s\n'
'To silence this warning, decorate the function with'
' @tf.autograph.experimental.do_not_convert')
if isinstance(exc, errors.InaccessibleSourceCodeError):
if ag_ctx.INSPECT_SOURCE_SUPPORTED:
logging.warning(warning_template, f, '', exc)
elif isinstance(exc, errors.UnsupportedLanguageElementError):
if not conversion.is_in_allowlist_cache(f, options):
logging.warning(warning_template, f, '', exc)
else:
file_bug_message = (
'Please report this to the TensorFlow team. When filing the bug, set'
' the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and'
' attach the full output.\n')
logging.warning(warning_template, f, file_bug_message, exc)
return _call_unconverted(f, args, kwargs, options)
#
# TensorFlow integration
#
@tf_export('__internal__.autograph.tf_convert', v1=[])
def tf_convert(f, ctx, convert_by_default=True, user_requested=False):
"""Decorator that applies AutoGraph to a function.
Use in internal APIs.
This API is suitable for high order functions internal to the TensorFlow API,
and more generally any function to which AutoGraph is not applied.
Guidance: `convert` was a decorator meant for use directly by developers, but
most of today's uses go through `tf.function`. `tf_convert` is to be called
from high order functions internal to TF. By default, all the internal
TensorFlow functions are skipped when AutoGraph processes the code. This may
lead to user-supplied functions to be incorrectly skipped as well.
`tf_convert` helps avoid that. See the following example for more details.
```
=====tf_internal_module.py=====
def unconverted(input_fn):
return input_fn()
def converted(input_fn):
return tf.__internal__.autograph.tf_convert(
input_fn, ctx=tf.__internal__.autograph.control_status_ctx())()
======user_module.py======
@tf.function
def foo(input_fn)
return unconverted(input_fn)
@tf.function
def bar(input_fn)
return converted(input_fn)
@tf.function(autograph=False)
def baz(input_fn)
return converted(input_fn)
```
The `foo` method above will execute the `input_fn` without autograph
conversion, while the `bar` method will run an autographed `input_fn`. The
`baz` method will run an unconverted `input_fn`, since `tf_convert` respect
the control status context.
Note that both methods in `tf_internal_module` are skipped by autograph when
tracing the `tf.function`. The configuration of whether a module/package
should be skipped by autograph is controlled in
tensorflow/python/autograph/core/config.py.
Args:
f: Callable.
ctx: ag_ctx.ControlStatusCtx, the Autograph context in which `f` is used.
convert_by_default: bool, whether to use AutoGraph when the context doesn't
specify.
user_requested: bool, whether to ignore the conversion allowlist. See
ConversionOptions.user_requested.
Returns:
Either `f or the converted version of `f`.
"""
if is_autograph_artifact(f):
return f
f_wrapper = f
decorators, f = tf_decorator.unwrap(f)
# TODO(mdan): Grab features from context.
# Note: we pass the original context through to convert to properly handle the
# following scenario, which can be used inside TF implementations:
#
# ctx = ag_ctx.control_status_ctx()
# @function(autograph=False) # Low-level graph code
# def inner_fn():
# # The context is disabled here, but should be enabled in user user_fn
# tf_convert(user_fn, ctx=ctx)
if ctx.status == ag_ctx.Status.ENABLED:
wrapper_factory = convert(
recursive=True, user_requested=user_requested, conversion_ctx=ctx)
elif ctx.status == ag_ctx.Status.DISABLED:
wrapper_factory = do_not_convert
elif ctx.status == ag_ctx.Status.UNSPECIFIED:
if convert_by_default:
wrapper_factory = convert(
recursive=True, user_requested=user_requested, conversion_ctx=ctx)
else:
wrapper_factory = call_with_unspecified_conversion_status
else:
assert False, 'This switch contains all possible cases!'
wrapper = wrapper_factory(f)
if decorators:
wrapper = tf_decorator.rewrap(f_wrapper, f, wrapper)
return autograph_artifact(wrapper)
def call_with_unspecified_conversion_status(func):
"""Decorator that resets the conversion context to the unspecified status."""
def wrapper(*args, **kwargs):
with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.UNSPECIFIED):
return func(*args, **kwargs)
if inspect.isfunction(func) or inspect.ismethod(func):
wrapper = functools.update_wrapper(wrapper, func)
return autograph_artifact(wrapper)
def _log_callargs(f, args, kwargs):
"""Logging helper."""
logging.log(2, 'Defaults of %s : %s', f, f.__defaults__)
logging.log(2, 'KW defaults of %s : %s', f, f.__kwdefaults__)
if kwargs is not None:
callargs = tf_inspect.getcallargs(f, *args, **kwargs)
else:
callargs = tf_inspect.getcallargs(f, *args)
formatted_callargs = '\n'.join(
' {}: {}'.format(k, v) for k, v in callargs.items())
logging.log(2, 'Calling %s with\n%s\n', f, formatted_callargs)
#
# Public API
#
@tf_export('autograph.experimental.do_not_convert')
def do_not_convert(func=None):
"""Decorator that suppresses the conversion of a function.
Args:
func: function to decorate.
Returns:
If `func` is not None, returns a `Callable` which is equivalent to
`func`, but is not converted by AutoGraph.
If `func` is None, returns a decorator that, when invoked with a
single `func` argument, returns a `Callable` equivalent to the
above case.
"""
if func is None:
return do_not_convert
def wrapper(*args, **kwargs):
with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED):
return func(*args, **kwargs)
if inspect.isfunction(func) or inspect.ismethod(func):
wrapper = functools.update_wrapper(wrapper, func)
return autograph_artifact(wrapper)
# TODO(mdan): Make private.
def convert(recursive=False,
optional_features=None,
user_requested=True,
conversion_ctx=ag_ctx.NullCtx()):
"""Decorator that compiles a function to use TensorFlow ops.
The decorator is dynamic - it recompiles the target whenever the decorated
function is called. This means the parameter values are known at conversion.
It also means that repeated calls with different types of parameters will be
correctly processed.
Args:
recursive: bool, whether to recursively convert any functions or classes
that the converted function may use.
optional_features: converted.Feature, allows toggling optional or
experimental features. When set to None, only the core features are
enabled.
user_requested: bool, whether this is a function that the user explicitly
asked to be converted. See ConversionOptions.user_requested.
conversion_ctx: Optional ag_ctx.ControlStatusCtx, the Autograph context in
which `f` is used.
Returns:
Callable, a decorator that converts the given function into an equivalent
function that uses TensorFlow ops.
"""
def decorator(f):
"""Decorator implementation."""
def wrapper(*args, **kwargs):
"""Wrapper that calls the converted version of f."""
options = converter.ConversionOptions(
recursive=recursive,
user_requested=user_requested,
optional_features=optional_features)
try:
with conversion_ctx:
return converted_call(f, args, kwargs, options=options)
except Exception as e: # pylint:disable=broad-except
if hasattr(e, 'ag_error_metadata'):
raise e.ag_error_metadata.to_exception(e)
else:
raise
if inspect.isfunction(f) or inspect.ismethod(f):
wrapper = functools.update_wrapper(wrapper, f)
decorated_wrapper = tf_decorator.make_decorator(f, wrapper)
return autograph_artifact(decorated_wrapper)
return decorator
# pylint:disable=line-too-long
@tf_export('autograph.to_graph', v1=[])
def to_graph(entity, recursive=True, experimental_optional_features=None):
"""Converts a Python entity into a TensorFlow graph.
Also see: `tf.autograph.to_code`, `tf.function`.
Unlike `tf.function`, `to_graph` is a low-level transpiler that converts
Python code to TensorFlow graph code. It does not implement any caching,
variable management or create any actual ops, and is best used where greater
control over the generated TensorFlow graph is desired. Another difference
from `tf.function` is that `to_graph` will not wrap the graph into a
TensorFlow function or a Python callable. Internally, `tf.function` uses
`to_graph`.
Example usage:
>>> def f(x):
... if x > 0:
... y = x * x
... else:
... y = -x
... return y
...
>>> converted_f = to_graph(f)
>>> x = tf.constant(2)
>>> converted_f(x) # converted_foo is like a TensorFlow Op.
<tf.Tensor: shape=(), dtype=int32, numpy=4>
Supported Python entities include:
* functions
* classes
* object methods
Functions are converted into new functions with converted code.
Classes are converted by generating a new class whose methods use converted
code.
Methods are converted into unbound function that have an additional first
argument called `self`.
For a tutorial, see the
[tf.function and AutoGraph guide](https://www.tensorflow.org/guide/function).
For more detailed information, see the
[AutoGraph reference documentation](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/index.md).
Args:
entity: Python callable or class to convert.
recursive: Whether to recursively convert any functions that the converted
function may call.
experimental_optional_features: `None`, a tuple of, or a single
`tf.autograph.experimental.Feature` value.
Returns:
Same as `entity`, the converted Python function or class.
Raises:
ValueError: If the entity could not be converted.
"""
try:
program_ctx = converter.ProgramContext(
options=converter.ConversionOptions(
recursive=recursive,
user_requested=True,
optional_features=experimental_optional_features))
return autograph_artifact(_convert_actual(entity, program_ctx))
except (ValueError, AttributeError, KeyError, NameError, AssertionError) as e:
logging.error(1, 'Error converting %s', entity, exc_info=True)
raise ConversionError('converting {}: {}: {}'.format(
entity, e.__class__.__name__, str(e)))
@tf_export(v1=['autograph.to_graph'])
def to_graph_v1(entity,
recursive=True,
arg_values=None,
arg_types=None,
experimental_optional_features=None):
"""Converts a Python entity into a TensorFlow graph.
Also see: `tf.autograph.to_code`, `tf.function`.
Unlike `tf.function`, `to_graph` is a low-level transpiler that converts
Python code to TensorFlow graph code. It does not implement any caching,
variable management or create any actual ops, and is best used where greater
control over the generated TensorFlow graph is desired. Another difference
from `tf.function` is that `to_graph` will not wrap the graph into a
TensorFlow function or a Python callable. Internally, `tf.function` uses
`to_graph`.
_Example Usage_
```python
def foo(x):
if x > 0:
y = x * x
else:
y = -x
return y
converted_foo = to_graph(foo)
x = tf.constant(1)
y = converted_foo(x) # converted_foo is a TensorFlow Op-like.
assert is_tensor(y)
```
Supported Python entities include:
* functions
* classes
* object methods
Functions are converted into new functions with converted code.
Classes are converted by generating a new class whose methods use converted
code.
Methods are converted into unbound function that have an additional first
argument called `self`.
Args:
entity: Python callable or class to convert.
recursive: Whether to recursively convert any functions that the converted
function may call.
arg_values: Deprecated.
arg_types: Deprecated.
experimental_optional_features: `None`, a tuple of, or a single
`tf.autograph.experimental.Feature` value.
Returns:
Same as `entity`, the converted Python function or class.
Raises:
ValueError: If the entity could not be converted.
"""
del arg_types
del arg_values
return to_graph(
entity,
recursive=recursive,
experimental_optional_features=experimental_optional_features)
@tf_export(v1=['autograph.to_code'])
def to_code_v1(entity,
recursive=True,
arg_values=None,
arg_types=None,
indentation=' ',
experimental_optional_features=None):
"""Returns the source code generated by AutoGraph, as a string.
Example usage:
>>> def f(x):
... if x < 0:
... x = -x
... return x
>>> tf.autograph.to_code(f)
"...def tf__f(x):..."
Also see: `tf.autograph.to_graph`.
Note: If a function has been decorated with `tf.function`, pass its
underlying Python function, rather than the callable that `tf.function
creates:
>>> @tf.function
... def f(x):
... if x < 0:
... x = -x
... return x
>>> tf.autograph.to_code(f.python_function)
"...def tf__f(x):..."
Args:
entity: Python callable or class.
recursive: Whether to recursively convert any functions that the converted
function may call.
arg_values: Deprecated.
arg_types: Deprecated.
indentation: Deprecated.
experimental_optional_features: `None`, a tuple of, or a single
`tf.autograph.experimental.Feature` value.
Returns:
The converted code as string.
"""
del arg_values
del arg_types
del indentation
return to_code(
entity,
recursive=recursive,
experimental_optional_features=experimental_optional_features)
@tf_export('autograph.to_code', v1=[])
def to_code(entity, recursive=True, experimental_optional_features=None):
"""Returns the source code generated by AutoGraph, as a string.
Example usage:
>>> def f(x):
... if x < 0:
... x = -x
... return x
>>> tf.autograph.to_code(f)
"...def tf__f(x):..."
Also see: `tf.autograph.to_graph`.
Note: If a function has been decorated with `tf.function`, pass its
underlying Python function, rather than the callable that `tf.function
creates:
>>> @tf.function
... def f(x):
... if x < 0:
... x = -x
... return x
>>> tf.autograph.to_code(f.python_function)
"...def tf__f(x):..."
Args:
entity: Python callable or class to convert.
recursive: Whether to recursively convert any functions that the converted
function may call.
experimental_optional_features: `None`, a tuple of, or a single
`tf.autograph.experimental.Feature` value.
Returns:
The converted code as string.
"""
source = tf_inspect.getsource(
to_graph(
entity,
recursive=recursive,
experimental_optional_features=experimental_optional_features))
return textwrap.dedent(source)
_TRANSPILER = PyToTF()