3RNN/Lib/site-packages/tensorflow/python/autograph/operators/logical.py
2024-05-26 19:49:15 +02:00

97 lines
2.6 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Logical boolean operators: not, and, or."""
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import cond as tf_cond
from tensorflow.python.ops import gen_math_ops
def not_(a):
"""Functional form of "not"."""
if tensor_util.is_tf_type(a):
return _tf_not(a)
return _py_not(a)
def _tf_not(a):
"""Implementation of the "not_" operator for TensorFlow."""
return gen_math_ops.logical_not(a)
def _py_not(a):
"""Default Python implementation of the "not_" operator."""
return not a
def and_(a, b):
"""Functional form of "and". Uses lazy evaluation semantics."""
a_val = a()
if tensor_util.is_tf_type(a_val):
return _tf_lazy_and(a_val, b)
return _py_lazy_and(a_val, b)
def _tf_lazy_and(cond, b):
"""Lazy-eval equivalent of "and" for Tensors."""
# TODO(mdan): Enforce cond is scalar here?
return tf_cond.cond(cond, b, lambda: cond)
def _py_lazy_and(cond, b):
"""Lazy-eval equivalent of "and" in Python."""
return cond and b()
def or_(a, b):
"""Functional form of "or". Uses lazy evaluation semantics."""
a_val = a()
if tensor_util.is_tf_type(a_val):
return _tf_lazy_or(a_val, b)
return _py_lazy_or(a_val, b)
def _tf_lazy_or(cond, b):
"""Lazy-eval equivalent of "or" for Tensors."""
# TODO(mdan): Enforce cond is scalar here?
return tf_cond.cond(cond, lambda: cond, b)
def _py_lazy_or(cond, b):
"""Lazy-eval equivalent of "or" in Python."""
return cond or b()
def eq(a, b):
"""Functional form of "equal"."""
if tensor_util.is_tf_type(a) or tensor_util.is_tf_type(b):
return _tf_equal(a, b)
return _py_equal(a, b)
def _tf_equal(a, b):
"""Overload of "equal" for Tensors."""
return gen_math_ops.equal(a, b)
def _py_equal(a, b):
"""Overload of "equal" that falls back to Python's default implementation."""
return a == b
def not_eq(a, b):
"""Functional form of "not-equal"."""
return not_(eq(a, b))