3RNN/Lib/site-packages/tensorflow/python/eager/execute.py
2024-05-26 19:49:15 +02:00

330 lines
11 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions called by the generated code to execute an eager-mode op."""
from google.protobuf import text_format
from tensorflow.core.framework import tensor_pb2
from tensorflow.python import pywrap_tfe
from tensorflow.python.eager import core
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_conversion_registry
from tensorflow.python.framework import tensor_shape
from tensorflow.python.types import core as core_types
from tensorflow.python.util import compat
def quick_execute(op_name, num_outputs, inputs, attrs, ctx, name=None):
"""Execute a TensorFlow operation.
Args:
op_name: Name of the TensorFlow operation (see REGISTER_OP in C++ code) to
execute.
num_outputs: The number of outputs of the operation to fetch. (Explicitly
provided instead of being inferred for performance reasons).
inputs: A list of inputs to the operation. Each entry should be a Tensor, or
a value which can be passed to the Tensor constructor to create one.
attrs: A tuple with alternating string attr names and attr values for this
operation.
ctx: The value of context.context().
name: Customized name for the operation.
Returns:
List of output Tensor objects. The list is empty if there are no outputs
Raises:
An exception on error.
"""
device_name = ctx.device_name
# pylint: disable=protected-access
try:
ctx.ensure_initialized()
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
inputs, attrs, num_outputs)
except core._NotOkStatusException as e:
if name is not None:
e.message += " name: " + name
raise core._status_to_exception(e) from None
except TypeError as e:
keras_symbolic_tensors = [x for x in inputs if _is_keras_symbolic_tensor(x)]
if keras_symbolic_tensors:
raise core._SymbolicException(
"Inputs to eager execution function cannot be Keras symbolic "
"tensors, but found {}".format(keras_symbolic_tensors))
raise e
# pylint: enable=protected-access
return tensors
def execute_with_cancellation(op_name,
num_outputs,
inputs,
attrs,
ctx,
cancellation_manager,
name=None):
"""Execute a TensorFlow operation.
Args:
op_name: Name of the TensorFlow operation (see REGISTER_OP in C++ code) to
execute.
num_outputs: The number of outputs of the operation to fetch. (Explicitly
provided instead of being inferred for performance reasons).
inputs: A list of inputs to the operation. Each entry should be a Tensor, or
a value which can be passed to the Tensor constructor to create one.
attrs: A tuple with alternating string attr names and attr values for this
operation.
ctx: The value of context.context().
cancellation_manager: a `CancellationManager` object that can be used to
cancel the operation.
name: Customized name for the operation.
Returns:
List of output Tensor objects. The list is empty if there are no outputs
Raises:
An exception on error.
"""
device_name = ctx.device_name
# pylint: disable=protected-access
try:
ctx.ensure_initialized()
tensors = pywrap_tfe.TFE_Py_ExecuteCancelable(ctx._handle, device_name,
op_name, inputs, attrs,
cancellation_manager._impl,
num_outputs)
except core._NotOkStatusException as e:
if name is not None:
e.message += " name: " + name
raise core._status_to_exception(e) from None
except TypeError as e:
keras_symbolic_tensors = [x for x in inputs if _is_keras_symbolic_tensor(x)]
if keras_symbolic_tensors:
raise core._SymbolicException(
"Inputs to eager execution function cannot be Keras symbolic "
"tensors, but found {}".format(keras_symbolic_tensors))
raise e
# pylint: enable=protected-access
return tensors
def execute_with_callbacks(op_name, num_outputs, inputs, attrs, ctx, name=None):
"""Monkey-patch to execute to enable execution callbacks."""
tensors = quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
for callback in ctx.op_callbacks:
callback(op_name, tuple(inputs), attrs, tensors, name)
return tensors
execute = quick_execute
def must_record_gradient():
"""Import backprop if you want gradients recorded."""
return False
def record_gradient(unused_op_name, unused_inputs, unused_attrs,
unused_outputs):
"""Import backprop if you want gradients recorded."""
pass
def make_float(v, arg_name):
if not isinstance(v, compat.real_types):
raise TypeError("Expected float for argument '%s' not %s." %
(arg_name, repr(v)))
return float(v)
def make_int(v, arg_name):
if isinstance(v, str):
raise TypeError("Expected int for argument '%s' not %s." %
(arg_name, repr(v)))
try:
return int(v)
except (ValueError, TypeError):
raise TypeError("Expected int for argument '%s' not %s." %
(arg_name, repr(v)))
def make_str(v, arg_name):
if not isinstance(v, compat.bytes_or_text_types):
raise TypeError("Expected string for argument '%s' not %s." %
(arg_name, repr(v)))
return compat.as_bytes(v) # Convert unicode strings to bytes.
def make_bool(v, arg_name):
if not isinstance(v, bool):
raise TypeError("Expected bool for argument '%s' not %s." %
(arg_name, repr(v)))
return v
def make_type(v, arg_name):
try:
v = dtypes.as_dtype(v).base_dtype
except TypeError:
raise TypeError("Expected DataType for argument '%s' not %s." %
(arg_name, repr(v)))
i = v.as_datatype_enum
return i
def make_shape(v, arg_name):
"""Convert v into a list."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# None if the rank is unknown, otherwise a list of ints (or Nones in the
# position where the dimension is unknown).
try:
shape = tensor_shape.as_shape(v)
except TypeError as e:
raise TypeError("Error converting %s to a TensorShape: %s." % (arg_name, e))
except ValueError as e:
raise ValueError("Error converting %s to a TensorShape: %s." %
(arg_name, e))
if shape.ndims is None:
return None
else:
return shape.as_list()
def make_tensor(v, arg_name):
"""Ensure v is a TensorProto."""
if isinstance(v, tensor_pb2.TensorProto):
return v
elif isinstance(v, str):
pb = tensor_pb2.TensorProto()
text_format.Merge(v, pb)
return pb
raise TypeError(
"Don't know how to convert %s to a TensorProto for argument '%s'." %
(repr(v), arg_name))
def args_to_matching_eager(l, ctx, allowed_dtypes, default_dtype=None):
"""Convert sequence `l` to eager same-type Tensors."""
del ctx # Unused
if (not l) and (default_dtype is not None):
return default_dtype, [] # List is empty; assume default dtype.
for x in l:
if not isinstance(x, core_types.Value):
break
else: # note: intentional for-else
return l[0]._datatype_enum(), l # pylint: disable=protected-access
# Is some input already a Tensor with a dtype?
dtype = None
for t in l:
if isinstance(t, core_types.Value):
dtype = t.dtype
break
if dtype is None:
# Infer a dtype based on the first value, and use that dtype for the
# remaining values.
ret = []
for t in l:
tensor = None
# First see if we can get a valid dtype with the default conversion
# and see if it matches an allowed dtypes. Some ops like ConcatV2 may
# not list allowed dtypes, in which case we should skip this.
if dtype is None and allowed_dtypes:
tensor = tensor_conversion_registry.convert(t)
# If we did not match an allowed dtype, try again with the default
# dtype. This could be because we have an empty tensor and thus we
# picked the wrong type.
if tensor.dtype not in allowed_dtypes:
tensor = None
if tensor is None:
tensor = tensor_conversion_registry.convert(
t, dtype, preferred_dtype=default_dtype
)
ret.append(tensor)
if dtype is None:
dtype = tensor.dtype
else:
ret = [tensor_conversion_registry.convert(t, dtype) for t in l]
# TODO(slebedev): consider removing this as it leaks a Keras concept.
# pylint: disable=protected-access
keras_symbolic_tensors = [x for x in ret if _is_keras_symbolic_tensor(x)]
if keras_symbolic_tensors:
raise core._SymbolicException(
"Using symbolic output of a Keras layer during eager execution "
"{}".format(keras_symbolic_tensors))
# pylint: enable=protected-access
return dtype.as_datatype_enum, ret
def convert_to_mixed_eager_tensors(values, ctx):
del ctx # Unused
v = [tensor_conversion_registry.convert(t) for t in values]
types = [t._datatype_enum() for t in v] # pylint: disable=protected-access
return types, v
def args_to_mixed_eager_tensors(lists, ctx):
"""Converts a list of same-length lists of values to eager tensors."""
del ctx # Unused
assert len(lists) > 1
# Generate an error if len(lists[i]) is not the same for all i.
lists_ret = [[]]
for l in lists[1:]:
if len(l) != len(lists[0]):
raise ValueError(
"Expected list arguments to be the same length: %d != %d (%r vs. %r)."
% (len(lists[0]), len(l), lists[0], l))
lists_ret.append([])
# Convert the first element of each list first, then the second element, etc.
types = []
for i in range(len(lists[0])):
dtype = None
# If any list has a Tensor, use that dtype
for l in lists:
if isinstance(l[i], core_types.Value):
dtype = l[i].dtype
break
if dtype is None:
# Convert the first one and use its dtype.
lists_ret[0].append(tensor_conversion_registry.convert(lists[0][i]))
dtype = lists_ret[0][i].dtype
for j in range(1, len(lists)):
lists_ret[j].append(
tensor_conversion_registry.convert(lists[j][i], dtype=dtype)
)
else:
# Convert everything to the found dtype.
for j in range(len(lists)):
lists_ret[j].append(
tensor_conversion_registry.convert(lists[j][i], dtype=dtype)
)
types.append(dtype.as_datatype_enum)
return types, lists_ret
def _is_keras_symbolic_tensor(x):
return hasattr(x, "graph") and getattr(x.graph, "name", None) == "keras_graph"