3RNN/Lib/site-packages/tensorflow/python/eager/wrap_function.py
2024-05-26 19:49:15 +02:00

679 lines
27 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=unidiomatic-typecheck
"""Prototype decorator for defining legacy-graph-mode functions."""
import weakref
from tensorflow.core.function.polymorphism import function_type as function_type_lib
from tensorflow.core.protobuf import meta_graph_pb2
from tensorflow.core.protobuf import struct_pb2
from tensorflow.python.eager import context
from tensorflow.python.eager import function
from tensorflow.python.eager import lift_to_graph
from tensorflow.python.eager.polymorphic_function import atomic_function
from tensorflow.python.framework import composite_tensor
from tensorflow.python.framework import func_graph
from tensorflow.python.framework import importer
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor as tensor_lib
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.saved_model import nested_structure_coder
from tensorflow.python.trackable import data_structures
from tensorflow.python.util import nest
from tensorflow.python.util.tf_export import tf_export
class VariableHolder(object):
"""Holds variables for a python function."""
def __init__(self, fn=None, share_variables=False):
self._fn = fn
self._share_variables = share_variables
self._variables_by_name = data_structures.Mapping()
@property
def variables(self):
return self._variables_by_name
def variable_creator_scope(self, next_creator, **kwargs):
"""Creates variables & adds them to collections to match legacy code."""
collections = kwargs.pop("collections", None)
v = None
# Get expected variable name.
with ops.name_scope(
kwargs.get("name", None), "Variable", skip_on_eager=False) as name:
variable_name = ops.name_from_scope_name(name)
kwargs["name"] = name
if self._share_variables:
v = self._variables_by_name.get(variable_name, None)
if v is None:
v = next_creator(**kwargs)
self._variables_by_name[variable_name] = v
if collections is None:
collections = [ops.GraphKeys.GLOBAL_VARIABLES]
if v.trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections:
collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES]
ops.add_to_collections(collections, v)
return v
def __call__(self, *args, **kwargs):
return self.call_with_variable_creator_scope(self._fn)(*args, **kwargs)
def call_with_variable_creator_scope(self, fn):
def wrapped(*args, **kwargs):
with variable_scope.variable_creator_scope(self.variable_creator_scope):
return fn(*args, **kwargs)
return wrapped
def _get_element_from_tensor_info(tensor_info, graph):
"""Simplified copy of the deprecated `get_tensor_from_tensor_info`."""
encoding = tensor_info.WhichOneof("encoding")
if encoding == "name":
# We may get operations here in some cases. TensorInfo is a bit of a
# misnomer if so.
return graph.as_graph_element(tensor_info.name)
elif encoding == "coo_sparse":
return sparse_tensor.SparseTensor(
graph.get_tensor_by_name(tensor_info.coo_sparse.indices_tensor_name),
graph.get_tensor_by_name(tensor_info.coo_sparse.values_tensor_name),
graph.get_tensor_by_name(
tensor_info.coo_sparse.dense_shape_tensor_name))
elif encoding == "composite_tensor":
spec_proto = struct_pb2.StructuredValue(
type_spec_value=tensor_info.composite_tensor.type_spec)
spec = nested_structure_coder.decode_proto(spec_proto)
components = [graph.get_tensor_by_name(component.name) for component in
tensor_info.composite_tensor.components]
return spec._from_components(components) # pylint: disable=protected-access
else:
raise ValueError(f"Invalid TensorInfo.encoding: {encoding}. Valid "
"encodings are 'name', 'coo_sparse', and "
"'composite_tensor'.")
def _lift_single_variable(old_variable, graph, variable_holder):
"""Lifts `old_variable` out of the `FuncGraph` `graph`."""
new_variable = resource_variable_ops.UninitializedVariable(
shape=old_variable.shape,
dtype=old_variable.dtype,
name=old_variable.op.name,
trainable=old_variable.trainable,
extra_handle_data=old_variable.handle)
new_variable._initializer_op = old_variable._initializer_op # pylint: disable=protected-access
graph.add_capture(new_variable.handle, old_variable.handle)
# Now that we've added the new variable to graph.captures,
# graph.capture will use that cached value and do some post-processing
# on the capture like recording it on the tape.
graph.capture(new_variable.handle)
# pylint: disable=protected-access
variable_name = new_variable.name.split(":")[0]
variable_holder._variables_by_name[variable_name] = new_variable
graph._weak_variables.append(weakref.ref(new_variable))
# pylint: enable=protected-access
graph.watch_variable(new_variable)
return new_variable
def _lift_unlifted_variables(graph, variable_holder):
"""Finds resource variables and lifts them into the outer context.
When we import a GraphDef inside a wrap_function, no Python graph building
code runs. This means we get VarHandleOps which create variable resources,
but no corresponding Python objects. Leaving them like this works but gives
the user no way to interact with or modify the variables outside the graph.
This method searches for variables and lifts them out as regular variable
objects when possible, indicating to the FuncGraph that they are captures.
Args:
graph: The FuncGraph to lift variables from.
variable_holder: A VariableHolder to record the lifted variables in.
"""
with graph.as_default():
global_collection_variables = ops.get_collection(
ops.GraphKeys.GLOBAL_VARIABLES)
local_collection_variables = ops.get_collection(
ops.GraphKeys.LOCAL_VARIABLES)
existing_captures = {id(c) for c in graph.internal_captures}
lifted_variables = {}
def _should_lift_variable(v):
return ((v._in_graph_mode # pylint: disable=protected-access
and v.graph.building_function)
and isinstance(v, resource_variable_ops.BaseResourceVariable)
and id(v.handle) not in existing_captures)
for old_variable in global_collection_variables:
if _should_lift_variable(old_variable):
new_variable = _lift_single_variable(
old_variable, graph, variable_holder)
lifted_variables[id(old_variable)] = new_variable
existing_captures.add(id(old_variable.handle))
for old_variable in local_collection_variables:
if _should_lift_variable(old_variable):
new_variable = _lift_single_variable(
old_variable, graph, variable_holder)
lifted_variables[id(old_variable)] = new_variable
existing_captures.add(id(old_variable.handle))
if new_variable._in_graph_mode: # pylint: disable=protected-access
outer_graph = new_variable.graph
# Variables are added to the global collection by default. In this
# case we only want the variable in the local collection, so we'll pop
# it out.
global_collection = outer_graph.get_collection_ref(
ops.GraphKeys.GLOBAL_VARIABLES)
global_collection.remove(new_variable)
outer_graph.add_to_collection(
ops.GraphKeys.LOCAL_VARIABLES, new_variable)
# Update the FuncGraph's collections, partly for the user and partly so this
# function is idempotent when it runs again in prune() calls.
for collection_name in [
ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.LOCAL_VARIABLES
]:
mutable_collection = ops.get_collection_ref(collection_name)
for index, current in enumerate(mutable_collection):
mutable_collection[index] = lifted_variables.get(id(current), current)
if not resource_variable_ops.is_resource_variable(
mutable_collection[index]):
logging.log_first_n(
logging.WARN,
"Unable to create a python object for variable {} because it is "
"a reference variable. It may not be visible to training APIs. "
"If this is a problem, consider rebuilding the SavedModel after "
"running tf.compat.v1.enable_resource_variables().".format(
mutable_collection[index]),
5)
# TODO(allenl): make this trackable
class WrappedFunction(function.ConcreteFunction):
"""Wraps a tf V1 piece of code in a function."""
def __init__(self, fn_graph, variable_holder, attrs=None, signature=None):
self._variable_holder = variable_holder
_lift_unlifted_variables(fn_graph, variable_holder)
# We call __init__ after lifting variables so that the function's signature
# properly reflects the new captured inputs.
for f in fn_graph.as_graph_def(use_pybind11_proto=True).library.function:
context.context().add_function_def(f)
self._signature = signature
function_type = function_type_lib.from_structured_signature(
fn_graph.structured_input_signature,
fn_graph.structured_outputs,
fn_graph.function_captures.capture_types,
)
atomic_fn = atomic_function.from_func_graph(
function._inference_name(fn_graph.name), fn_graph, attrs, function_type
)
super().__init__(atomic_fn)
def _call_impl(self, args, kwargs):
if self._arg_keywords is None:
if kwargs:
raise NotImplementedError(
"Keyword arguments are not supported when calling a "
f"wrap_function-decorated function. Got {kwargs}.")
if self._signature is not None:
args = list(args)
for i, arg in enumerate(args):
if isinstance(self._signature[i], tensor_lib.DenseSpec):
args[i] = ops.convert_to_tensor(arg, self._signature[i].dtype)
return self._call_flat(args, self.captured_inputs)
else:
return super()._call_impl(args, kwargs)
def prune(self, feeds, fetches, name=None, input_signature=None):
"""Extract a subgraph of this function's underlying graph.
Wraps the subgraph in a new `WrappedFunction` object.
Args:
feeds: Input tensors to the subgraph to extract, as `Tensor` objects.
fetches: Possibly-nested Python data structure containing information
about outputs of the target subgraph. Each entry can either be a
`Tensor` object (for data outputs), an `Operation` object (for control
outputs), or a `TensorInfo` proto. Any additional shape/dtype
information provided in a `TensorInfo` and not present in the original
graph will be added to the returned subgraph.
name: (optional) Name to give to the underlying `FuncGraph` of the
returned object. If no name is provided, the graph's name will be
`"pruned"`.
input_signature: (optional) possibly-nested Python data structure
containing `TensorSpec` objects, with which to populate the returned
functions's `FuncGraph`'s `structured_input_signature` field.
Returns:
A new `WrappedFunction` object containing a copy of the portion of this
object's graph that goes from `feeds` to `fetches`.
"""
# TODO(b/129646028): Add support for CompositeTensors.
name = name or "pruned"
flat_feeds = nest.flatten(feeds, expand_composites=True)
flat_feeds = [self.graph.as_graph_element(t) for t in flat_feeds]
for f in flat_feeds:
if not isinstance(f, tensor_lib.Tensor):
raise ValueError(
"All members of argument `feeds` must be tensors. "
f"Got {f} with type {type(f)}."
)
# Ignoring all feeds that are captures allows prune to be called
# using wrapped_func.inputs even when it uses variables
internal_captures = {id(c) for c in self.graph.internal_captures}
flat_feeds = [f for f in flat_feeds if id(f) not in internal_captures]
operation_fetches = []
tensor_fetches = []
tensor_infos = []
def _fetch_preprocessing_callback(fetch):
"""Extract out lists of ops, tensors, and tensor type info.
Turns TensorInfos into Tensors in the original `fetches` structure.
Also extracts ops from `fetches`.
Args:
fetch: The fetch to preprocess: Tensor, TensorInfo, or Operation, or
string identifying a Tensor or Operation.
Returns:
`fetch` converted to a Tensor.
"""
if isinstance(fetch, ops.Operation):
operation_fetches.append(fetch)
return fetch
elif isinstance(fetch, meta_graph_pb2.TensorInfo):
tensor_infos.append(fetch)
decoded = _get_element_from_tensor_info(fetch, self._func_graph)
if (tensor_util.is_tf_type(decoded) or
isinstance(decoded, composite_tensor.CompositeTensor)):
tensor_fetches.append(decoded)
else:
operation_fetches.append(decoded)
return decoded
elif isinstance(
fetch, (tensor_lib.Tensor, composite_tensor.CompositeTensor)):
tensor_fetches.append(fetch)
return fetch
else:
graph_element = self.graph.as_graph_element(fetch)
return _fetch_preprocessing_callback(graph_element)
fetches = nest.map_structure(_fetch_preprocessing_callback, fetches)
# Expand composite tensors into their component dense Tensors.
tensor_fetches = nest.flatten(tensor_fetches, expand_composites=True)
for f in flat_feeds + tensor_fetches + operation_fetches:
if f.graph is not self._func_graph:
raise ValueError("Can only prune function whose feeds and fetches "
f"from graph {self._func_graph}. Input "
f"{f} is from a different graph {f.graph}.")
with self._func_graph.as_default():
pruned_graph = func_graph.FuncGraph(name)
lift_map = lift_to_graph.lift_to_graph(
operation_fetches + tensor_fetches,
pruned_graph,
sources=flat_feeds + self.graph.internal_captures,
base_graph=self._func_graph)
# Note that we add the component tensors of any composite tensors to the
# returned function's outputs list; the list must contain these component
# tensors, or the function's sparse outputs won't work properly.
pruned_graph.outputs.extend(lift_map[x] for x in tensor_fetches)
pruned_graph.control_outputs.extend(
[lift_map[operation] for operation in operation_fetches])
pruned_graph.inputs.extend(lift_map[x] for x in flat_feeds)
for external_capture, internal_capture in self.graph.captures:
pruned_graph.add_capture(external_capture, lift_map[internal_capture])
for ti in tensor_infos:
if ti.WhichOneof("encoding") == "name": # Dense tensors only
t = pruned_graph.as_graph_element(ti.name)
if tensor_util.is_tf_type(t):
t.set_shape(tensor_shape.TensorShape(ti.tensor_shape))
# pylint: disable=protected-access
for f in self.graph._functions.values():
pruned_graph._add_function(f)
# pylint: enable=protected-access
pruned_graph.variables = self.graph.variables
def _structured_output_mapping(fetched):
"""callback for `nest.map_structure()`"""
lifted = lift_map[fetched]
if isinstance(lifted, ops.Operation):
return None
return lifted
# expand_composites=True here causes composite tensors to be expanded
# into their component dense Tensors, mapped to the new graph, and then
# reconstituted into their original composite form.
pruned_graph.structured_outputs = nest.map_structure(
_structured_output_mapping, fetches, expand_composites=True)
if input_signature:
# canonicalize the signature before setting
args, kwargs = input_signature
args = () if args is None else args
input_signature = (args, kwargs)
pruned_graph.structured_input_signature = input_signature
pruned_fn = WrappedFunction(
pruned_graph, variable_holder=self._variable_holder)
pruned_fn._num_positional_args = len(flat_feeds) # pylint: disable=protected-access
# TODO(kathywu): Enable keyword arguments if an input signature is specified
pruned_fn._arg_keywords = [tensor.op.name for tensor in flat_feeds] # pylint: disable=protected-access
return pruned_fn
def _filter_returned_ops(fn):
"""Filtering out any ops returned by function.
Args:
fn: a function
Returns:
A tuple of (
Wrapped function that returns `None` in place of any ops,
dict that maps the index in the flat output structure to the returned op
)
"""
returned_ops = {}
def wrap_and_filter_returned_ops(*args, **kwargs):
outputs = fn(*args, **kwargs)
flat_outputs = nest.flatten(outputs)
for n in range(len(flat_outputs)):
output = flat_outputs[n]
if isinstance(output, ops.Operation):
returned_ops[n] = output
flat_outputs[n] = None
return nest.pack_sequence_as(outputs, flat_outputs)
return wrap_and_filter_returned_ops, returned_ops
class WrappedGraph(object):
"""Class for wrapping multiple TF 1.X functions in a single graph.
Maintains a dictionary mapping names to wrapped functions. See
`tf.compat.v1.wrap_function` to learn more about wrapping V1 functions.
Functions wrapped using this class have access to variables and collections
created in other wrapped functions, using the standard TF 1.X API (
`tf.compat.v1.get_variable` or
`tf.compat.v1.get_default_graph().get_collection(...)`)
Outside a function, variables and collections may be accessed using the
`variables` and `graph` properties.
Example:
```
def add_v1(x):
with tf.compat.v1.variable_scope('vars', reuse=tf.compat.v1.AUTO_REUSE):
v = tf.compat.v1.get_variable('v', shape=[], dtype=tf.int32)
return v + x
def increment_var_v1(x):
with tf.compat.v1.variable_scope('vars', reuse=tf.compat.v1.AUTO_REUSE):
v = tf.compat.v1.get_variable('v', shape=[], dtype=tf.int32)
return v.assign_add(x)
g = WrappedGraph()
add = g.wrap_function(add_v1, [tf.TensorSpec([], tf.int32)])
increment_var = g.wrap_function(increment_var_v1,
[tf.TensorSpec([], tf.int32)])
assert len(g.variables) == 1
assert g.variables[0].numpy() == 0
increment_var(tf.constant(5))
assert g.variables[0].numpy() == 5
```
"""
def __init__(self, variable_holder=None, **kwargs):
self._variable_holder = (
variable_holder or VariableHolder(share_variables=True))
name = kwargs.pop("name", "wrapped_function_graph")
# Always start with empty collections, unless otherwise specified. Setting
# `collections=None` will copy the collections from the outer graph.
collections = kwargs.pop("collections", {})
self.graph = func_graph.FuncGraph(name, collections=collections, **kwargs)
self._wrapped_function = WrappedFunction(self.graph, self._variable_holder)
self._functions = {}
@property
def functions(self):
return self._functions
@property
def variables(self):
return self._variable_holder.variables
def wrap_function(self, fn, signature, name=None):
"""Wraps a TF 1.X function and returns an eager-compatible function.
All functions wrapped in the same `WrappedGraph` will have access to the
same graph (`tf.compat.v1.get_default_graph` to get the graph object
within a function, or `WrappedGraph.graph` to get the graph outside a
function). Variables created within the function will be added to the
`variables` list.
Function inputs: All inputs to the function must be tensors (nested ok),
with their shapes and dtypes defined in the `signature` argument.
Function outputs:
* The 1.X function may return tensors, variables, and ops. The wrapped
eager-compatible function will always return tensors in the same nested
structure.
* Variables are replaced with a tensor containing the latest read values.
* Returned ops are executed, and replaced with None.
* The order of op execution and variable reads in the return is
nondeterministic. For example:
```
def update_var(x):
v = tf.Variable(0)
op = tf.compat.v1.assign(v, x).op
return v, op
g = WrappedGraph()
fn = g.wrap_function(update_var)
read_value, _ = fn(tf.constant(3))
print(read_value.numpy()) # could be 0 or 3
print(g.variables[0].numpy()) # always 3
```
To ensure that ops in the function are executed (e.g. ops added to the
`tf.GraphKeys.UPDATE_OPS` collection), include them in the function returns.
Args:
fn: a 1.X tensorflow function.
signature: a possibly nested sequence of `TensorSpecs` specifying the
shapes and dtypes of the arguments.
name: an optional string name for the function. The function will be saved
with key `name` in the `functions` dictionary.
Returns:
An eager-compatible function.
"""
return self._wrap_function(fn, signature=signature, name=name)
def _wrap_function(self,
fn,
args=None,
kwargs=None,
signature=None,
name=None):
"""Internal wrap function method with extended func_graph arguments."""
fn_with_filter_and_scope, returned_ops = _filter_returned_ops(
self._variable_holder.call_with_variable_creator_scope(fn))
func_graph.func_graph_from_py_func(
None, # Name is unused.
fn_with_filter_and_scope,
args=args,
kwargs=kwargs,
signature=signature,
add_control_dependencies=False,
func_graph=self.graph)
# This code relies on questional behavior from `func_graph_from_py_func`.
# If an existing FuncGraph is passed into the `func_graph` arg, the inputs
# and structured outputs are overwritten. Pretty sure this is a bug,
# because structured outputs doesn't match up with the outputs...
fn_inputs = self.graph.inputs[:-len(self.graph.captures)]
# Return filtered ops to the flattened outputs.
flat_fn_outputs = nest.flatten(self.graph.structured_outputs)
for index, op in returned_ops.items():
flat_fn_outputs[index] = op
fn_outputs = nest.pack_sequence_as(self.graph.structured_outputs,
flat_fn_outputs)
name = name or fn.__name__
wrapped_function = self._wrapped_function.prune(
fn_inputs, fn_outputs, name, self.graph.structured_input_signature)
self._functions[name] = wrapped_function
return wrapped_function
@tf_export(v1=["wrap_function"])
def wrap_function(fn, signature, name=None):
"""Wraps the TF 1.x function fn into a graph function.
The python function `fn` will be called once with symbolic arguments specified
in the `signature`, traced, and turned into a graph function. Any variables
created by `fn` will be owned by the object returned by `wrap_function`. The
resulting graph function can be called with tensors which match the
signature.
```python
def f(x, do_add):
v = tf.Variable(5.0)
if do_add:
op = v.assign_add(x)
else:
op = v.assign_sub(x)
with tf.control_dependencies([op]):
return v.read_value()
f_add = tf.compat.v1.wrap_function(f, [tf.TensorSpec((), tf.float32), True])
assert float(f_add(1.0)) == 6.0
assert float(f_add(1.0)) == 7.0
# Can call tf.compat.v1.wrap_function again to get a new trace, a new set
# of variables, and possibly different non-template arguments.
f_sub= tf.compat.v1.wrap_function(f, [tf.TensorSpec((), tf.float32), False])
assert float(f_sub(1.0)) == 4.0
assert float(f_sub(1.0)) == 3.0
```
Both `tf.compat.v1.wrap_function` and `tf.function` create a callable
TensorFlow graph. But while `tf.function` runs all stateful operations
(e.g. `tf.print`) and sequences operations to provide the same semantics as
eager execution, `wrap_function` is closer to the behavior of `session.run` in
TensorFlow 1.x. It will not run any operations unless they are required to
compute the function's outputs, either through a data dependency or a control
dependency. Nor will it sequence operations.
Unlike `tf.function`, `wrap_function` will only trace the Python function
once. As with placeholders in TF 1.x, shapes and dtypes must be provided to
`wrap_function`'s `signature` argument.
Since it is only traced once, variables and state may be created inside the
function and owned by the function wrapper object.
Args:
fn: python function to be wrapped
signature: the placeholder and python arguments to be passed to the wrapped
function
name: Optional. The name of the function.
Returns:
the wrapped graph function.
"""
holder = VariableHolder(fn)
func_graph_name = "wrapped_function"
if name is not None:
func_graph_name = "wrapped_function_" + name
return WrappedFunction(
func_graph.func_graph_from_py_func(
func_graph_name,
holder,
args=None,
kwargs=None,
signature=signature,
add_control_dependencies=False,
collections={}),
variable_holder=holder,
signature=signature)
def function_from_graph_def(graph_def, inputs, outputs, captures=None):
"""Creates a ConcreteFunction from a GraphDef.
Args:
graph_def: A GraphDef to make a function out of.
inputs: A Tensor name or nested structure of names in `graph_def` which
should be inputs to the function.
outputs: A Tensor name or nested structure of names in `graph_def` which
should be outputs of the function.
captures: (Optional) A dictionary mapping node names in `graph_def` that
should be captured as inputs to tensors containing the value of the
captured inputs.
Returns:
A ConcreteFunction.
"""
def _imports_graph_def():
importer.import_graph_def(graph_def, name="")
graph = ops.get_default_graph()
if captures is not None:
for c in captures:
graph.add_capture(captures[c], graph.get_tensor_by_name(str(c) + ":0"))
wrapped_import = wrap_function(_imports_graph_def, [])
import_graph = wrapped_import.graph
return wrapped_import.prune(
nest.map_structure(import_graph.as_graph_element, inputs),
nest.map_structure(import_graph.as_graph_element, outputs))