3RNN/Lib/site-packages/tensorflow/python/framework/importer.py
2024-05-26 19:49:15 +02:00

568 lines
23 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A utility function for importing TensorFlow graphs."""
import contextlib
from tensorflow.core.framework import graph_pb2
from tensorflow.python import tf2
from tensorflow.python.client import pywrap_tf_session as c_api
from tensorflow.python.framework import c_api_util
from tensorflow.python.framework import device as pydev
from tensorflow.python.framework import errors
from tensorflow.python.framework import function
from tensorflow.python.framework import op_def_registry
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor
from tensorflow.python.ops import control_flow_util
from tensorflow.python.util import compat
from tensorflow.python.util.deprecation import deprecated_args
from tensorflow.python.util.tf_export import tf_export
# TODO(b/307794935): Remove after bug is fixed.
is_oss = True # Updated by copybara.
def _IsControlInput(input_name):
# Expected format: '^operation_name' (control input).
return input_name.startswith('^')
def _ParseTensorName(tensor_name):
"""Parses a tensor name into an operation name and output index.
This function will canonicalize tensor names as follows:
* "foo:0" -> ("foo", 0)
* "foo:7" -> ("foo", 7)
* "foo" -> ("foo", 0)
* "foo:bar:baz" -> ValueError
Args:
tensor_name: The name of a tensor.
Returns:
A tuple containing the operation name, and the output index.
Raises:
ValueError: If `tensor_name' cannot be interpreted as the name of a tensor.
"""
components = tensor_name.split(':')
if len(components) == 2:
# Expected format: 'operation_name:output_index'.
try:
output_index = int(components[1])
except ValueError:
raise ValueError(f'Cannot convert {tensor_name!r} to a tensor name. '
'Second component of the name following the `:` should '
f'be an int. Got {components[1]}.')
return components[0], output_index
elif len(components) == 1:
# Expected format: 'operation_name' (implicit 0th output).
return components[0], 0
else:
raise ValueError(f"Cannot convert '{tensor_name}' to a tensor name. Tensor "
'names should not contain more than 1 `:`. Obtained '
f'{len(components) - 1}')
@contextlib.contextmanager
def _MaybeDevice(device):
"""Applies the given device only if device is not None or empty."""
if device:
with ops.device(device):
yield
else:
yield
def _ProcessGraphDefParam(graph_def):
"""Type-checks and possibly canonicalizes `graph_def`."""
if not isinstance(graph_def, graph_pb2.GraphDef):
# `graph_def` could be a dynamically-created message, so try a duck-typed
# approach
try:
old_graph_def = graph_def
graph_def = graph_pb2.GraphDef()
graph_def.MergeFrom(old_graph_def)
except TypeError:
raise TypeError('Argument `graph_def` must be a GraphDef proto.')
else:
# If we're using the graph_def provided by the caller, modify graph_def
# in-place to add attr defaults to the NodeDefs (this is visible to the
# caller).
# NOTE(skyewm): this is undocumented behavior that at least meta_graph.py
# depends on. It might make sense to move this to meta_graph.py and have
# import_graph_def not modify the graph_def argument (we'd have to make sure
# this doesn't break anything else.)
for node in graph_def.node:
op_def = op_def_registry.get(node.op)
if op_def is None:
# Assume unrecognized ops are functions for now. TF_ImportGraphDef will
# report an error if the op is actually missing.
continue
_SetDefaultAttrValues(node, op_def)
return graph_def
def _ProcessInputMapParam(input_map):
"""Type-checks and possibly canonicalizes `input_map`."""
if input_map is None:
input_map = {}
else:
if not isinstance(input_map, dict):
raise TypeError('Argument `input_map` must be a dictionary. Obtained '
f'{type(input_map).__name__}')
if not all(
isinstance(k, compat.bytes_or_text_types) for k in input_map.keys()):
raise TypeError('All keys for argument `input_map` must be strings. '
f'Obtained keys: {list(input_map.keys())}')
return input_map
def _ProcessReturnElementsParam(return_elements):
"""Type-checks and possibly canonicalizes `return_elements`."""
if return_elements is None:
return None
if not all(
isinstance(x, compat.bytes_or_text_types) for x in return_elements):
raise TypeError('Argument `return_elements` must be a list of strings. '
f'Obtained {return_elements}.')
return tuple(compat.as_str(x) for x in return_elements)
def _FindAttrInOpDef(attr_name, op_def):
for attr_def in op_def.attr:
if attr_name == attr_def.name:
return attr_def
return None
def _RemoveDefaultAttrs(producer_op_list, graph_def):
"""Removes unknown default attrs according to `producer_op_list`.
Removes any unknown attrs in `graph_def` (i.e. attrs that do not appear in
registered OpDefs) that have a default value in `producer_op_list`.
Args:
producer_op_list: OpList proto.
graph_def: GraphDef proto
"""
producer_op_dict = {op.name: op for op in producer_op_list.op}
for node in graph_def.node:
# Remove any default attr values that aren't in op_def.
if node.op in producer_op_dict:
op_def = op_def_registry.get(node.op)
if op_def is None:
# Some custom op registrations won't show up here. That's OK, attribute
# stripping just won't be available.
continue
producer_op_def = producer_op_dict[node.op]
# We make a copy of node.attr to iterate through since we may modify
# node.attr inside the loop.
for key in list(node.attr):
if _FindAttrInOpDef(key, op_def) is None:
# No attr_def in consumer, look in producer.
attr_def = _FindAttrInOpDef(key, producer_op_def)
if (attr_def and attr_def.HasField('default_value') and
node.attr[key] == attr_def.default_value):
# Unknown attr had default value in producer, delete it so it can be
# understood by consumer.
del node.attr[key]
def _ConvertInputMapValues(name, input_map):
"""Ensures all input map values are tensors.
This should be called from inside the import name scope.
Args:
name: the `name` argument passed to import_graph_def
input_map: the `input_map` argument passed to import_graph_def.
Returns:
An possibly-updated version of `input_map`.
Raises:
ValueError: if input map values cannot be converted due to empty name scope.
"""
if not all(isinstance(v, tensor.Tensor) for v in input_map.values()):
if name == '': # pylint: disable=g-explicit-bool-comparison
raise ValueError(
'tf.import_graph_def() requires a non-empty `name` if `input_map` '
'contains non-Tensor values. Try calling tf.convert_to_tensor() on '
'`input_map` values before calling tf.import_graph_def().')
with ops.name_scope('_inputs'):
input_map = {k: ops.convert_to_tensor(v) for k, v in input_map.items()}
return input_map
def _PopulateTFImportGraphDefOptions(options, prefix, input_map,
return_elements,
validate_colocation_constraints,
propagate_device_spec=False):
"""Populates the TF_ImportGraphDefOptions `options`."""
c_api.TF_ImportGraphDefOptionsSetPrefix(options, prefix)
c_api.TF_ImportGraphDefOptionsSetUniquifyNames(options, True)
c_api.TF_ImportGraphDefOptionsSetPropagateDeviceSpec(options,
propagate_device_spec)
for input_src, input_dst in input_map.items():
input_src = compat.as_str(input_src)
if input_src.startswith('^'):
src_name = compat.as_str(input_src[1:])
dst_op = input_dst._as_tf_output().oper # pylint: disable=protected-access
c_api.TF_ImportGraphDefOptionsRemapControlDependency(
options, src_name, dst_op)
else:
src_name, src_idx = _ParseTensorName(input_src)
src_name = compat.as_str(src_name)
dst_output = input_dst._as_tf_output() # pylint: disable=protected-access
c_api.TF_ImportGraphDefOptionsAddInputMapping(options, src_name, src_idx,
dst_output)
for name in return_elements or []:
if ':' in name:
op_name, index = _ParseTensorName(name)
op_name = compat.as_str(op_name)
c_api.TF_ImportGraphDefOptionsAddReturnOutput(options, op_name, index)
else:
c_api.TF_ImportGraphDefOptionsAddReturnOperation(options,
compat.as_str(name))
c_api.TF_ImportGraphDefOptionsSetValidateColocationConstraints(
options, validate_colocation_constraints)
def _ProcessNewOps(graph):
"""Processes the newly-added TF_Operations in `graph`."""
# Maps from a node to the names of the ops it's colocated with, if colocation
# is specified in the attributes.
colocation_pairs = {}
for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access
original_device = new_op.device
new_op._set_device('') # pylint: disable=protected-access
colocation_names = _GetColocationNames(new_op)
if colocation_names:
colocation_pairs[new_op] = colocation_names
# Don't set a device for this op, since colocation constraints override
# device functions and the original device. Note that this op's device may
# still be set by the loop below.
# TODO(skyewm): why does it override the original device?
else:
with _MaybeDevice(original_device):
graph._apply_device_functions(new_op) # pylint: disable=protected-access
# The following loop populates the device field of ops that are colocated
# with another op. This is implied by the colocation attribute, but we
# propagate the device field for completeness.
for op, coloc_op_list in colocation_pairs.items():
coloc_device = None
# Find any device in the list of colocated ops that have a device, if it
# exists. We assume that if multiple ops have devices, they refer to the
# same device. Otherwise, a runtime error will occur since the colocation
# property cannot be guaranteed. Note in TF2 colocations have been removed
# from the public API and will be considered a hint, so there is no runtime
# error.
#
# One possible improvement is to try to check for compatibility of all
# devices in this list at import time here, which would require
# implementing a compatibility function for device specs in python.
for coloc_op_name in coloc_op_list:
try:
coloc_op = graph._get_operation_by_name(coloc_op_name) # pylint: disable=protected-access
except KeyError:
# Do not error in TF2 if the colocation cannot be guaranteed
if tf2.enabled() or control_flow_util.EnableControlFlowV2(graph):
continue
raise ValueError(f'Specified colocation to an op: {coloc_op_name} that '
f'does not exist during import for op: {op.name}')
if coloc_op.device:
coloc_device = pydev.DeviceSpec.from_string(coloc_op.device)
break
if coloc_device:
op._set_device(coloc_device) # pylint: disable=protected-access
def _GetColocationNames(op):
"""Returns names of the ops that `op` should be colocated with."""
colocation_names = []
try:
class_values = op.get_attr('_class')
except ValueError:
# No _class attr
return
for val in class_values:
val = compat.as_str(val)
if val.startswith('loc:@'):
colocation_node_name = val[len('loc:@'):]
if colocation_node_name != op.name:
colocation_names.append(colocation_node_name)
return colocation_names
def _GatherReturnElements(requested_return_elements, graph, results):
"""Returns the requested return elements from results.
Args:
requested_return_elements: list of strings of operation and tensor names
graph: Graph
results: wrapped TF_ImportGraphDefResults
Returns:
list of `Operation` and/or `Tensor` objects
"""
return_outputs = c_api.TF_ImportGraphDefResultsReturnOutputs(results)
return_opers = c_api.TF_ImportGraphDefResultsReturnOperations(results)
combined_return_elements = []
outputs_idx = 0
opers_idx = 0
for name in requested_return_elements:
if ':' in name:
combined_return_elements.append(
graph._get_tensor_by_tf_output(return_outputs[outputs_idx])) # pylint: disable=protected-access
outputs_idx += 1
else:
combined_return_elements.append(
graph._get_operation_by_tf_operation(return_opers[opers_idx])) # pylint: disable=protected-access
opers_idx += 1
return combined_return_elements
def _SetDefaultAttrValues(node_def, op_def):
"""Set any default attr values in `node_def` that aren't present."""
assert node_def.op == op_def.name
for attr_def in op_def.attr:
key = attr_def.name
if attr_def.HasField('default_value'):
value = node_def.attr[key]
if value is None or value.WhichOneof('value') is None:
node_def.attr[key].CopyFrom(attr_def.default_value)
@tf_export('graph_util.import_graph_def', 'import_graph_def')
@deprecated_args(None, 'Please file an issue at '
'https://github.com/tensorflow/tensorflow/issues if you depend'
' on this feature.', 'op_dict')
def import_graph_def(graph_def,
input_map=None,
return_elements=None,
name=None,
op_dict=None,
producer_op_list=None):
"""Imports the graph from `graph_def` into the current default `Graph`.
This function provides a way to import a serialized TensorFlow
[`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer, and extract individual objects in the `GraphDef` as
`tf.Tensor` and `tf.Operation` objects. Once extracted,
these objects are placed into the current default `Graph`. See
`tf.Graph.as_graph_def` for a way to create a `GraphDef`
proto.
Args:
graph_def: A `GraphDef` proto containing operations to be imported into
the default graph.
input_map: A dictionary mapping input names (as strings) in `graph_def`
to `Tensor` objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective `Tensor` values.
return_elements: A list of strings containing operation names in
`graph_def` that will be returned as `Operation` objects; and/or
tensor names in `graph_def` that will be returned as `Tensor` objects.
name: (Optional.) A prefix that will be prepended to the names in
`graph_def`. Note that this does not apply to imported function names.
Defaults to `"import"`.
op_dict: (Optional.) Deprecated, do not use.
producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped)
list of `OpDef`s used by the producer of the graph. If provided,
unrecognized attrs for ops in `graph_def` that have their default value
according to `producer_op_list` will be removed. This will allow some more
`GraphDef`s produced by later binaries to be accepted by earlier binaries.
Returns:
A list of `Operation` and/or `Tensor` objects from the imported graph,
corresponding to the names in `return_elements`,
and None if `returns_elements` is None.
Raises:
TypeError: If `graph_def` is not a `GraphDef` proto,
`input_map` is not a dictionary mapping strings to `Tensor` objects,
or `return_elements` is not a list of strings.
ValueError: If `input_map`, or `return_elements` contains names that
do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
it refers to an unknown tensor).
"""
del op_dict
return _import_graph_def_internal(
graph_def,
input_map=input_map,
return_elements=return_elements,
name=name,
producer_op_list=producer_op_list)
def import_graph_def_for_function( # pylint: disable=invalid-name
graph_def, name=None, propagate_device_spec=False):
"""Like import_graph_def but does not validate colocation constraints."""
return _import_graph_def_internal(
graph_def,
validate_colocation_constraints=False,
name=name,
propagate_device_spec=propagate_device_spec)
def _import_graph_def_internal( # pylint: disable=invalid-name
graph_def,
input_map=None,
return_elements=None,
validate_colocation_constraints=True,
name=None,
producer_op_list=None,
propagate_device_spec=False):
"""Imports the graph from `graph_def` into the current default `Graph`.
This function provides a way to import a serialized TensorFlow
[`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer, and extract individual objects in the `GraphDef` as
`tf.Tensor` and `tf.Operation` objects. Once extracted,
these objects are placed into the current default `Graph`. See
`tf.Graph.as_graph_def` for a way to create a `GraphDef`
proto.
Args:
graph_def: A `GraphDef` proto containing operations to be imported into the
default graph.
input_map: A dictionary mapping input names (as strings) in `graph_def` to
`Tensor` objects. The values of the named input tensors in the imported
graph will be re-mapped to the respective `Tensor` values.
return_elements: A list of strings containing operation names in `graph_def`
that will be returned as `Operation` objects; and/or tensor names in
`graph_def` that will be returned as `Tensor` objects.
validate_colocation_constraints: Whether to validate colocation constraints.
name: (Optional.) A prefix that will be prepended to the names in
`graph_def`. Note that this does not apply to imported function names.
Defaults to `"import"`.
producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped)
list of `OpDef`s used by the producer of the graph. If provided,
unrecognized attrs for ops in `graph_def` that have their default value
according to `producer_op_list` will be removed. This will allow some more
`GraphDef`s produced by later binaries to be accepted by earlier binaries.
propagate_device_spec: Whether to propagate assigned device information
when importing a graph from a GraphDef into the current default `Graph`.
Returns:
A list of `Operation` and/or `Tensor` objects from the imported graph,
corresponding to the names in `return_elements`,
and None if `returns_elements` is None.
Raises:
TypeError: If `graph_def` is not a `GraphDef` proto,
`input_map` is not a dictionary mapping strings to `Tensor` objects,
or `return_elements` is not a list of strings.
ValueError: If `input_map`, or `return_elements` contains names that
do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
it refers to an unknown tensor).
"""
graph_def = _ProcessGraphDefParam(graph_def)
input_map = _ProcessInputMapParam(input_map)
return_elements = _ProcessReturnElementsParam(return_elements)
if producer_op_list is not None:
# TODO(skyewm): make a copy of graph_def so we're not mutating the argument?
_RemoveDefaultAttrs(producer_op_list, graph_def)
graph = ops.get_default_graph()
with ops.name_scope(name, 'import', input_map.values()) as scope:
# Save unique prefix generated by name_scope
if scope:
assert scope.endswith('/')
prefix = scope[:-1]
else:
prefix = ''
# Generate any input map tensors inside name scope
input_map = _ConvertInputMapValues(name, input_map)
scoped_options = c_api_util.ScopedTFImportGraphDefOptions()
options = scoped_options.options
_PopulateTFImportGraphDefOptions(options, prefix, input_map, return_elements,
validate_colocation_constraints,
propagate_device_spec)
# _ProcessNewOps mutates the new operations. _mutation_lock ensures a
# Session.run call cannot occur between creating the TF_Operations in the
# TF_GraphImportGraphDefWithResults call and mutating the them in
# _ProcessNewOps.
with graph._mutation_lock(): # pylint: disable=protected-access
if is_oss:
graph_def_input = c_api.TF_NewBufferFromString(
compat.as_bytes(graph_def.SerializeToString())
)
graph_import_graphdef = c_api.TF_GraphImportGraphDefWithResults
else:
graph_def_input = graph_def
graph_import_graphdef = (
c_api.TF_GraphImportGraphDefWithResultsNoSerialization
)
try:
with graph._c_graph.get() as c_graph: # pylint: disable=protected-access
results = graph_import_graphdef(c_graph, graph_def_input, options)
results = c_api_util.ScopedTFImportGraphDefResults(results)
except errors.InvalidArgumentError as e:
# Convert to ValueError for backwards compatibility.
raise ValueError(str(e))
finally:
if is_oss:
c_api.TF_DeleteBuffer(graph_def_input)
# Create _DefinedFunctions for any imported functions.
#
# We do this by creating _DefinedFunctions directly from `graph_def`, and
# adding them to `graph`. Adding an existing function to a TF_Graph is a
# no-op, so this only has the effect of updating the Python state (usually
# _DefinedFunction.add_to_graph also adds the function to the TF_Graph).
#
# TODO(skyewm): fetch the TF_Functions directly from the TF_Graph
# TODO(skyewm): avoid sending serialized FunctionDefs back to the TF_Graph
_ProcessNewOps(graph)
if graph_def.library and graph_def.library.function:
functions = function.from_library(graph_def.library)
for f in functions:
f.add_to_graph(graph)
# Treat input mappings that don't appear in the graph as an error, because
# they are likely to be due to a typo.
missing_unused_input_keys = (
c_api.TF_ImportGraphDefResultsMissingUnusedInputMappings_wrapper(
results.results))
if missing_unused_input_keys:
missing_unused_input_keys = [
compat.as_str(s) for s in missing_unused_input_keys
]
missing_keys = ', '.join(missing_unused_input_keys)
raise ValueError(
'Attempted to map inputs that were not found in graph_def: '
f'[{missing_keys}]')
if return_elements is None:
return None
else:
return _GatherReturnElements(return_elements, graph, results.results)