3RNN/Lib/site-packages/tensorflow/python/layers/utils.py
2024-05-26 19:49:15 +02:00

226 lines
7.1 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Contains layer utilities for input validation and format conversion."""
from tensorflow.python.framework import smart_cond as smart_module
from tensorflow.python.ops import cond
from tensorflow.python.ops import variables
def convert_data_format(data_format, ndim):
if data_format == 'channels_last':
if ndim == 3:
return 'NWC'
elif ndim == 4:
return 'NHWC'
elif ndim == 5:
return 'NDHWC'
else:
raise ValueError(f'Input rank: {ndim} not supported. We only support '
'input rank 3, 4 or 5.')
elif data_format == 'channels_first':
if ndim == 3:
return 'NCW'
elif ndim == 4:
return 'NCHW'
elif ndim == 5:
return 'NCDHW'
else:
raise ValueError(f'Input rank: {ndim} not supported. We only support '
'input rank 3, 4 or 5.')
else:
raise ValueError(f'Invalid data_format: {data_format}. We only support '
'"channels_first" or "channels_last"')
def normalize_tuple(value, n, name):
"""Transforms a single integer or iterable of integers into an integer tuple.
Args:
value: The value to validate and convert. Could an int, or any iterable
of ints.
n: The size of the tuple to be returned.
name: The name of the argument being validated, e.g. "strides" or
"kernel_size". This is only used to format error messages.
Returns:
A tuple of n integers.
Raises:
ValueError: If something else than an int/long or iterable thereof was
passed.
"""
if isinstance(value, int):
return (value,) * n
else:
try:
value_tuple = tuple(value)
except TypeError:
raise ValueError(f'Argument `{name}` must be a tuple of {str(n)} '
f'integers. Received: {str(value)}')
if len(value_tuple) != n:
raise ValueError(f'Argument `{name}` must be a tuple of {str(n)} '
f'integers. Received: {str(value)}')
for single_value in value_tuple:
try:
int(single_value)
except (ValueError, TypeError):
raise ValueError(f'Argument `{name}` must be a tuple of {str(n)} '
f'integers. Received: {str(value)} including element '
f'{str(single_value)} of type '
f'{str(type(single_value))}')
return value_tuple
def normalize_data_format(value):
data_format = value.lower()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('The `data_format` argument must be one of '
'"channels_first", "channels_last". Received: '
f'{str(value)}.')
return data_format
def normalize_padding(value):
padding = value.lower()
if padding not in {'valid', 'same'}:
raise ValueError('The `padding` argument must be one of "valid", "same". '
f'Received: {str(padding)}.')
return padding
def conv_output_length(input_length, filter_size, padding, stride, dilation=1):
"""Determines output length of a convolution given input length.
Args:
input_length: integer.
filter_size: integer.
padding: one of "same", "valid", "full".
stride: integer.
dilation: dilation rate, integer.
Returns:
The output length (integer).
"""
if input_length is None:
return None
assert padding in {'same', 'valid', 'full'}
dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1)
if padding == 'same':
output_length = input_length
elif padding == 'valid':
output_length = input_length - dilated_filter_size + 1
elif padding == 'full':
output_length = input_length + dilated_filter_size - 1
return (output_length + stride - 1) // stride
def conv_input_length(output_length, filter_size, padding, stride):
"""Determines input length of a convolution given output length.
Args:
output_length: integer.
filter_size: integer.
padding: one of "same", "valid", "full".
stride: integer.
Returns:
The input length (integer).
"""
if output_length is None:
return None
assert padding in {'same', 'valid', 'full'}
if padding == 'same':
pad = filter_size // 2
elif padding == 'valid':
pad = 0
elif padding == 'full':
pad = filter_size - 1
return (output_length - 1) * stride - 2 * pad + filter_size
def deconv_output_length(input_length, filter_size, padding, stride):
"""Determines output length of a transposed convolution given input length.
Args:
input_length: integer.
filter_size: integer.
padding: one of "same", "valid", "full".
stride: integer.
Returns:
The output length (integer).
"""
if input_length is None:
return None
input_length *= stride
if padding == 'valid':
input_length += max(filter_size - stride, 0)
elif padding == 'full':
input_length -= (stride + filter_size - 2)
return input_length
def smart_cond(pred, true_fn=None, false_fn=None, name=None):
"""Return either `true_fn()` if predicate `pred` is true else `false_fn()`.
If `pred` is a bool or has a constant value, we return either `true_fn()`
or `false_fn()`, otherwise we use `tf.cond` to dynamically route to both.
Args:
pred: A scalar determining whether to return the result of `true_fn` or
`false_fn`.
true_fn: The callable to be performed if pred is true.
false_fn: The callable to be performed if pred is false.
name: Optional name prefix when using `tf.cond`.
Returns:
Tensors returned by the call to either `true_fn` or `false_fn`.
Raises:
TypeError: If `true_fn` or `false_fn` is not callable.
"""
if isinstance(pred, variables.Variable):
return cond.cond(
pred, true_fn=true_fn, false_fn=false_fn, name=name)
return smart_module.smart_cond(
pred, true_fn=true_fn, false_fn=false_fn, name=name)
def constant_value(pred):
"""Return the bool value for `pred`, or None if `pred` had a dynamic value.
Args:
pred: A scalar, either a Python bool or a TensorFlow boolean variable
or tensor, or the Python integer 1 or 0.
Returns:
True or False if `pred` has a constant boolean value, None otherwise.
Raises:
TypeError: If `pred` is not a Variable, Tensor or bool, or Python
integer 1 or 0.
"""
# Allow integer booleans.
if isinstance(pred, int):
if pred == 1:
pred = True
elif pred == 0:
pred = False
if isinstance(pred, variables.Variable):
return None
return smart_module.smart_constant_value(pred)