3RNN/Lib/site-packages/tensorflow/python/ops/array_grad.py
2024-05-26 19:49:15 +02:00

1235 lines
45 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gradients for operators defined in array_ops.py."""
from tensorflow.compiler.tf2xla.ops import gen_xla_ops
from tensorflow.python import pywrap_tfe
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import indexed_slices as indexed_slices_lib
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack
from tensorflow.python.ops import cond
from tensorflow.python.ops import control_flow_util
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import gen_resource_variable_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops
@ops.RegisterGradient("Pack")
def _PackGrad(op: ops.Operation, grad):
"""Gradient for pack op."""
return array_ops_stack.unstack(
grad, num=op.get_attr("N"), axis=op.get_attr("axis"))
@ops.RegisterGradient("Unpack")
def _UnpackGrad(op: ops.Operation, *grads):
"""Gradient for unpack op."""
return array_ops_stack.stack(grads, axis=op.get_attr("axis"))
def _ConcatGradHelper(
op: ops.Operation, grad, start_value_index, end_value_index, dim_index
):
"""Gradient for concat op.
Args:
op: An operation.
grad: `Tensor` or `IndexedSlices` representing the gradients with respect to
each output of the op.
start_value_index: An integer index of the first value in the op.inputs.
end_value_index: An integer index of the last value in the op.inputs.
dim_index: An integer index of concat_dim or axis parameter in op.inputs.
Returns:
Tensors representing the partial gradients with respect to each input
of the op.
Raises:
ValueError: if concat_dim/axis is not statically known.
"""
def _CreateDenseMaskAndBegin(sizes, concat_dim):
"""Create variables for iteratively slicing a dense gradients tensor."""
# Since shape is 1-D, shape_of_shape = [rank-of-inputs]
shape_of_shape = array_ops.shape(sizes[0])
# Make a vector of length equal to the input's dimensions,
# with 0's everywhere and 1 in the concat dim position.
# Note: Can't use sparse_to_dense since it isn't GPU-capable (for now)
mask = array_ops.concat([
array_ops.zeros(
array_ops.expand_dims(concat_dim, 0), dtype=dtypes.int32), [1],
array_ops.zeros(shape_of_shape - concat_dim - 1, dtype=dtypes.int32)
], 0)
begin = array_ops.zeros(shape_of_shape, dtype=dtypes.int32)
return mask, begin
def _ExtractInputShapes(inputs):
"""Extract the shapes of a set of input tensors."""
if context.executing_eagerly():
return array_ops.shape_n(inputs)
sizes = []
fully_known = True
for x in inputs:
input_shape = array_ops.shape(x)
if not isinstance(input_shape,
tensor.Tensor) or input_shape.op.type != "Const":
fully_known = False
break
sizes.append(input_shape)
if fully_known:
return sizes
else:
return array_ops.shape_n(inputs)
# Degenerate concatenation, just return grad.
if len(op.inputs) == 2:
return grad + [None] if end_value_index <= dim_index else [None] + grad
concat_dim = op.inputs[dim_index]
input_values = op.inputs[start_value_index:end_value_index]
out_grads = []
if isinstance(grad, tensor.Tensor):
if context.executing_eagerly() or isinstance(concat_dim, ops.EagerTensor):
# Using mod here for convenience since concat_dim is already verified
# in concat implementation to be within the allowed [-rank, rank) range.
non_neg_concat_dim = (
concat_dim._numpy().item(0) % input_values[0]._rank()) # pylint: disable=protected-access
# All inputs are guaranteed to be EagerTensors in eager mode
sizes = pywrap_tfe.TFE_Py_TensorShapeSlice(input_values,
non_neg_concat_dim)
out_grads = array_ops.split(grad, sizes, non_neg_concat_dim)
else:
if constant_op.is_constant(concat_dim):
# If concat_dim is a constant defined in a different context,
# then we duplicate it in the current context to avoid passing it
# through an Enter node.
# This is a small optimization in general, but it is required when
# compiling with XLA, as XLA needs the concat input to be folded into a
# constant.
grad_context = control_flow_util.GetOutputContext(grad.op)
dim_context = control_flow_util.GetOutputContext(concat_dim.op)
if dim_context != grad_context:
value = tensor_util.constant_value(concat_dim)
concat_dim = constant_op.constant(value=value, dtype=concat_dim.dtype)
# Using mod here for convenience since concat_dim is already verified
# in concat implementation to be within the allowed [-rank, rank) range.
non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0])
# Get the inputs' tensor shapes
sizes = _ExtractInputShapes(input_values)
# The magic number of 16 was found through benchmarking a range of sizes
# on CPUs and a Maxwell TitanX. A speedup was seen in a large majority of
# cases when switching implementations at N=16, but it is possible that
# there will be a small number of performance regressions.
if len(sizes) > 16:
# extract the size of each input along the concat dimension
sizes = array_ops.squeeze(
array_ops.slice(
array_ops_stack.stack(sizes, axis=1), [non_neg_concat_dim, 0],
[1, -1]))
out_grads = array_ops.split(grad, sizes, non_neg_concat_dim)
else:
offset = gen_array_ops.concat_offset(non_neg_concat_dim, sizes)
for (begin, size) in zip(offset, sizes):
out_grads.append(array_ops.slice(grad, begin, size))
elif isinstance(grad, indexed_slices_lib.IndexedSlices):
# Using mod here for convenience since concat_dim is already verified
# in concat implementation to be within the allowed [-rank, rank) range.
non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0])
concat_dim_static = tensor_util.constant_value(concat_dim)
if concat_dim_static is None:
raise ValueError("Can only compute IndexedSlices gradient with "
"statically-known concat_dim")
if concat_dim_static < 0:
rank = tensor_util.constant_value(array_ops.rank(input_values[0]))
if rank is None:
raise ValueError("Can only compute IndexedSlices gradient with "
"negative concat_dim when first value rank is "
"statically-known.")
concat_dim_static %= rank
# Get the inputs' tensor shapes
sizes = [array_ops.shape(x) for x in input_values]
if concat_dim_static > 0:
# IndexedSlices, non_neg_concat_dim > 0. Each input gets IndexedSlices
# gradients with all the indices, but with grad.values sliced accordingly.
# This is like the Tensor case, except shape(grad.values)[0] is not equal
# to shape(sizes[i])[0], since only a subset of the dim-0 values are
# stored.
mask, begin = _CreateDenseMaskAndBegin(sizes, non_neg_concat_dim)
for size in sizes:
new_values = array_ops.slice(
grad.values, begin,
array_ops.concat([[-1], array_ops.slice(size, [1], [-1])], 0))
out_grads.append(
indexed_slices_lib.IndexedSlices(new_values, grad.indices, size))
# Lint complains begin = begin + ...
begin = math_ops.add(begin, size * mask)
else:
# IndexedSlices, concat_dim == 0. Each input gets IndexedSlices gradients
# only for the relevant indices.
start = constant_op.constant(0, dtype=grad.indices.dtype)
for size in sizes:
size_concat_dim = array_ops.gather(size, non_neg_concat_dim)
if size_concat_dim.dtype != grad.indices.dtype:
size_concat_dim = math_ops.cast(
size_concat_dim, dtype=grad.indices.dtype)
end = start + size_concat_dim
# Compute the 1-D Tensor of indices relevant for this input.
indices_to_select = array_ops.squeeze(
array_ops.where(
math_ops.logical_and(grad.indices >= start,
grad.indices < end)),
axis=[1])
new_indices = array_ops.gather(grad.indices, indices_to_select) - start
new_values = array_ops.gather(grad.values, indices_to_select)
out_grads.append(
indexed_slices_lib.IndexedSlices(new_values, new_indices, size))
start = end
else:
raise TypeError("Expected Tensor or IndexedSlices, got %s" % type(grad))
return (out_grads + [None] if end_value_index <= dim_index else [None] +
out_grads)
@ops.RegisterGradient("Concat")
def _ConcatGrad(op: ops.Operation, grad):
return _ConcatGradHelper(
op,
grad,
start_value_index=1,
end_value_index=len(op.inputs),
dim_index=0)
@ops.RegisterGradient("ConcatV2")
def _ConcatGradV2(op: ops.Operation, grad):
return _ConcatGradHelper(
op, grad, start_value_index=0, end_value_index=-1, dim_index=-1)
ops.NotDifferentiable("ConcatOffset")
@ops.RegisterGradient("Slice")
def _SliceGrad(op: ops.Operation, grad):
"""Gradient for Slice op."""
# Create an Nx2 padding where the first column represents how many
# zeros are to be prepended for each dimension, and the second
# column indicates how many zeros are appended.
#
# The number of zeros to append is the shape of the input
# elementwise-subtracted by both the begin vector and sizes vector.
#
# Some more reshaping is needed to assemble this tensor with the
# right dimensions.
input_vec = op.inputs[0]
begin_vec = op.inputs[1]
input_rank = array_ops.rank(input_vec)
index_dtype = begin_vec.dtype
slice_size = array_ops.shape(op.outputs[0], out_type=index_dtype)
if control_flow_util.GraphOrParentsInXlaContext(ops.get_default_graph()):
return gen_xla_ops.xla_dynamic_update_slice(array_ops.zeros_like(input_vec),
grad, begin_vec), None, None
shape = array_ops_stack.stack([input_rank, 1])
before_pad = array_ops.reshape(begin_vec, shape)
after_pad = array_ops.reshape(
array_ops.shape(input_vec, out_type=index_dtype) - slice_size - begin_vec,
shape)
paddings = array_ops.concat([before_pad, after_pad], 1)
return array_ops.pad(grad, paddings), None, None
@ops.RegisterGradient("StridedSlice")
def _StridedSliceGrad(op: ops.Operation, grad):
"""Gradient for StridedSlice op."""
begin = op.inputs[1]
end = op.inputs[2]
strides = op.inputs[3]
# StridedSliceGrad requires `x`, `begin`, `end` and `strides` to be of the
# same dtype so we build a shape of the same type as other args.
# Note that the choice of `begin` for specifying `out_type` is arbitrary.
# We could choose any of {begin|end|strides}.dtype since they are required to
# be the same.
x = array_ops.shape(op.inputs[0], out_type=begin.dtype)
x_static = tensor_util.constant_value(x)
x = x_static if x_static is not None else x
begin_static = tensor_util.constant_value(begin)
begin = begin_static if begin_static is not None else begin
end_static = tensor_util.constant_value(end)
end = end_static if end_static is not None else end
strides_static = tensor_util.constant_value(strides)
strides = strides_static if strides_static is not None else strides
return array_ops.strided_slice_grad(
x,
begin,
end,
strides,
grad,
begin_mask=op.get_attr("begin_mask"),
end_mask=op.get_attr("end_mask"),
ellipsis_mask=op.get_attr("ellipsis_mask"),
new_axis_mask=op.get_attr("new_axis_mask"),
shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
@ops.RegisterGradient("StridedSliceGrad")
def _StridedSliceGradGrad(op: ops.Operation, grad):
"""Gradient for StridedSliceGrad op."""
begin = op.inputs[1]
end = op.inputs[2]
strides = op.inputs[3]
return None, None, None, None, array_ops.strided_slice(
grad,
begin,
end,
strides,
begin_mask=op.get_attr("begin_mask"),
end_mask=op.get_attr("end_mask"),
ellipsis_mask=op.get_attr("ellipsis_mask"),
new_axis_mask=op.get_attr("new_axis_mask"),
shrink_axis_mask=op.get_attr("shrink_axis_mask"))
@ops.RegisterGradient("TensorStridedSliceUpdate")
def _TensorStridedSliceUpdateGrad(op: ops.Operation, grad): # pylint:disable=missing-function-docstring
begin = op.inputs[1]
end = op.inputs[2]
strides = op.inputs[3]
begin_mask = op.get_attr("begin_mask")
end_mask = op.get_attr("end_mask")
ellipsis_mask = op.get_attr("ellipsis_mask")
new_axis_mask = op.get_attr("new_axis_mask")
shrink_axis_mask = op.get_attr("shrink_axis_mask")
def Apply(f, *args):
return f(*args,
begin_mask=begin_mask,
end_mask=end_mask,
shrink_axis_mask=shrink_axis_mask,
new_axis_mask=new_axis_mask,
ellipsis_mask=ellipsis_mask)
dy = Apply(array_ops.strided_slice,
grad, begin, end, strides)
dx = Apply(array_ops.tensor_strided_slice_update,
grad, begin, end, strides, array_ops.zeros_like(dy))
# The value is potentially broadcast to the shape of the strided slice, so we
# may need to adjust dy.
slice_shape = array_ops.shape(dy, out_type=begin.dtype)
value_shape = array_ops.shape(op.inputs[4], out_type=slice_shape.dtype)
_, reduction_axes = gen_array_ops.broadcast_gradient_args(
slice_shape, value_shape)
dy_reshaped = math_ops.reduce_sum(dy, axis=reduction_axes, keepdims=True)
dy = array_ops.reshape(dy_reshaped, value_shape)
return dx, None, None, None, dy
@ops.RegisterGradient("Split")
def _SplitGrad(op: ops.Operation, *grads):
return None, array_ops.concat(list(grads), op.inputs[0])
@ops.RegisterGradient("SplitV")
def _SplitVGrad(op: ops.Operation, *grads):
returnval = array_ops.concat(list(grads), op.inputs[2])
returnval = [returnval] + [
None,
] * (
len(op.inputs) - 1)
return returnval
ops.NotDifferentiable("Const")
@ops.RegisterGradient("Diag")
def _DiagGrad(_, grad):
return array_ops.diag_part(grad)
@ops.RegisterGradient("DiagPart")
def _DiagPartGrad(_, grad):
return array_ops.diag(grad)
@ops.RegisterGradient("MatrixDiag")
def _MatrixDiagGrad(_, grad):
return array_ops.matrix_diag_part(grad)
@ops.RegisterGradient("MatrixDiagV2")
def _MatrixDiagV2Grad(op: ops.Operation, grad):
return array_ops.matrix_diag_part(
grad, k=op.inputs[1]), None, None, None, None
@ops.RegisterGradient("MatrixDiagV3")
def _MatrixDiagV3Grad(op: ops.Operation, grad):
return array_ops.matrix_diag_part(
grad, k=op.inputs[1], align=op.get_attr("align")), None, None, None, None
@ops.RegisterGradient("MatrixDiagPart")
def _MatrixDiagPartGrad(op: ops.Operation, grad):
matrix_shape = op.inputs[0].get_shape()[-2:]
if matrix_shape.is_fully_defined() and matrix_shape[0] == matrix_shape[1]:
return array_ops.matrix_diag(grad)
else:
return array_ops.matrix_set_diag(array_ops.zeros_like(op.inputs[0]), grad)
@ops.RegisterGradient("MatrixDiagPartV2")
def _MatrixDiagPartV2Grad(op: ops.Operation, grad):
"""Gradient for MatrixDiagPartV2."""
matrix_shape = op.inputs[0].get_shape()[-2:]
if matrix_shape.is_fully_defined():
return array_ops.matrix_diag(
grad,
k=op.inputs[1],
num_rows=matrix_shape[0],
num_cols=matrix_shape[1]), None, None
else:
return array_ops.matrix_set_diag(
array_ops.zeros_like(op.inputs[0]), grad, k=op.inputs[1]), None, None
@ops.RegisterGradient("MatrixDiagPartV3")
def _MatrixDiagPartV3Grad(op: ops.Operation, grad):
"""Gradient for MatrixDiagPartV3."""
matrix_shape = op.inputs[0].get_shape()[-2:]
align = op.get_attr("align")
if matrix_shape.is_fully_defined():
return array_ops.matrix_diag(
grad,
k=op.inputs[1],
num_rows=matrix_shape[0],
num_cols=matrix_shape[1],
align=align), None, None
else:
return array_ops.matrix_set_diag(
array_ops.zeros_like(op.inputs[0]), grad, k=op.inputs[1],
align=align), None, None
@ops.RegisterGradient("MatrixSetDiag")
def _MatrixSetDiagGrad(op: ops.Operation, grad):
"""Gradient for MatrixSetDiag."""
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
@ops.RegisterGradient("MatrixSetDiagV2")
def _MatrixSetDiagGradV2(op: ops.Operation, grad):
"""Gradient for MatrixSetDiagV2."""
diag_shape = op.inputs[1].get_shape()
if not diag_shape.is_fully_defined():
# Need to know the values of `d_lower` and `d_upper` to infer diag_shape.
grad_shape = array_ops.shape(grad)
batch_shape = grad_shape[:-2]
matrix_shape = grad_shape[-2:]
diag_index = array_ops.reshape(op.inputs[2], [-1]) # Converts to vector.
d_lower = diag_index[0]
d_upper = diag_index[-1] # Works both when len(diag_index) is 1 and 2.
y_offset = cond.cond(
math_ops.less(d_upper, 0), lambda: d_upper, lambda: 0)
x_offset = cond.cond(
math_ops.greater(d_lower, 0), lambda: -d_lower, lambda: 0)
max_diag_len = math_ops.minimum(matrix_shape[0] + y_offset,
matrix_shape[1] + x_offset)
# pylint: disable=g-long-lambda
# pyformat: disable
postfix = cond.cond(
math_ops.equal(d_lower, d_upper),
lambda: ops.convert_to_tensor([max_diag_len]),
lambda: ops.convert_to_tensor([d_upper - d_lower + 1,
max_diag_len]))
# pyformat: enable
# pylint: enable=g-long-lambda
diag_shape = array_ops.concat([batch_shape, postfix], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(diag_shape, dtype=grad.dtype), k=op.inputs[2])
grad_diag = array_ops.matrix_diag_part(grad, k=op.inputs[2])
return (grad_input, grad_diag, None)
@ops.RegisterGradient("MatrixSetDiagV3")
def _MatrixSetDiagGradV3(op: ops.Operation, grad):
"""Gradient for MatrixSetDiagV3."""
diag_shape = op.inputs[1].get_shape()
align = op.get_attr("align")
if not diag_shape.is_fully_defined():
# Need to know the values of `d_lower` and `d_upper` to infer diag_shape.
grad_shape = array_ops.shape(grad)
batch_shape = grad_shape[:-2]
matrix_shape = grad_shape[-2:]
diag_index = array_ops.reshape(op.inputs[2], [-1]) # Converts to vector.
d_lower = diag_index[0]
d_upper = diag_index[-1] # Works both when len(diag_index) is 1 and 2.
y_offset = cond.cond(
math_ops.less(d_upper, 0), lambda: d_upper, lambda: 0)
x_offset = cond.cond(
math_ops.greater(d_lower, 0), lambda: -d_lower, lambda: 0)
max_diag_len = math_ops.minimum(matrix_shape[0] + y_offset,
matrix_shape[1] + x_offset)
# pylint: disable=g-long-lambda
# pyformat: disable
postfix = cond.cond(
math_ops.equal(d_lower, d_upper),
lambda: ops.convert_to_tensor([max_diag_len]),
lambda: ops.convert_to_tensor([d_upper - d_lower + 1,
max_diag_len]))
# pyformat: enable
# pylint: enable=g-long-lambda
diag_shape = array_ops.concat([batch_shape, postfix], 0)
grad_input = array_ops.matrix_set_diag(
grad,
array_ops.zeros(diag_shape, dtype=grad.dtype),
k=op.inputs[2],
align=align)
grad_diag = array_ops.matrix_diag_part(grad, k=op.inputs[2], align=align)
return (grad_input, grad_diag, None)
@ops.RegisterGradient("MatrixBandPart")
def _MatrixBandPartGrad(op: ops.Operation, grad):
num_lower = op.inputs[1]
num_upper = op.inputs[2]
return (array_ops.matrix_band_part(grad, num_lower, num_upper), None, None)
# Edit Distance has no gradient (but can be used to eval seq2seq or CTC).
ops.NotDifferentiable("EditDistance")
@ops.RegisterGradient("Fill")
def _FillGrad(_, grad):
return None, math_ops.reduce_sum(grad)
ops.NotDifferentiable("ZerosLike")
ops.NotDifferentiable("OnesLike")
@ops.RegisterGradient("PreventGradient")
def _PreventGradientGrad(op: ops.Operation, _):
raise LookupError("Gradient explicitly disabled. Reason: %s" %
op.get_attr("message"))
def _IndexedSlicesToTensorNoWarning(indexed_slices):
"""Converts an IndexedSlices to a Tensor without sparse->dense warnings."""
if not isinstance(indexed_slices, indexed_slices_lib.IndexedSlices):
# If it is not IndexedSlices, it's better be a tensor.
return indexed_slices
if indexed_slices.dense_shape is None:
raise ValueError(
"Tensor conversion requested for IndexedSlices without dense_shape: %s"
% str(indexed_slices))
return math_ops.unsorted_segment_sum(indexed_slices.values,
indexed_slices.indices,
indexed_slices.dense_shape[0])
@ops.RegisterGradient("Gather")
def _GatherGrad(op: ops.Operation, grad):
"""Gradient for Gather op."""
# params can be large, so colocate the shape calculation with it.
params = op.inputs[0]
with ops.colocate_with(params):
params_shape = array_ops.shape(params)
# Build appropriately shaped IndexedSlices
indices = op.inputs[1]
size = array_ops.expand_dims(array_ops.size(indices), 0)
values_shape = array_ops.concat([size, params_shape[1:]], 0)
values = array_ops.reshape(
_IndexedSlicesToTensorNoWarning(grad), values_shape)
indices = array_ops.reshape(indices, size)
return [indexed_slices_lib.IndexedSlices(values, indices, params_shape), None]
def _GetBatchIndices(params_shape, indices, batch_dims):
"""Addds the batch offsets to the given indices and returns the results."""
batch_indices = indices
indices_dtype = indices.dtype.base_dtype
casted_params_shape = math_ops.cast(params_shape, indices_dtype)
accum_dim_value = array_ops.ones((), dtype=indices_dtype)
for dim in range(batch_dims, 0, -1):
dim_value = casted_params_shape[dim - 1]
accum_dim_value *= casted_params_shape[dim]
start = array_ops.zeros((), dtype=indices_dtype)
step = array_ops.ones((), dtype=indices_dtype)
dim_indices = math_ops.range(start, dim_value, step)
dim_indices *= accum_dim_value
dim_shape = array_ops.concat([
array_ops.tile([1], [dim - 1]), [dim_value],
array_ops.tile([1], [array_ops.rank(indices) - dim])
], axis=0)
batch_indices += array_ops.reshape(dim_indices, dim_shape)
return batch_indices
def _BatchGatherGrad(params_shape, values, indices, batch_dims,
gather_dim_size):
"""Returns the gradient of GatherV2 with batch dimensions."""
# Axis is the first non-batch dimension.
indices_size = array_ops.expand_dims(array_ops.size(indices), 0)
if batch_dims:
values_shape = array_ops.shape(values)
# Add the batch offsets to indices and flatten the batch dimensions.
outer_shape = values_shape[:batch_dims]
inner_shape = values_shape[batch_dims:][1:]
batch_size = gen_math_ops.prod(outer_shape, [0], False)
flat_values_shape = array_ops.concat([[-1], inner_shape], 0)
gather_dim_size *= batch_size
indices = _GetBatchIndices(params_shape, indices, batch_dims)
values = array_ops.reshape(
_IndexedSlicesToTensorNoWarning(values), flat_values_shape)
indices = array_ops.reshape(indices, indices_size)
params_grad = math_ops.unsorted_segment_sum(values, indices, gather_dim_size)
if batch_dims:
# Put back the batch dimensions.
params_grad = array_ops.reshape(
params_grad, array_ops.concat([outer_shape, flat_values_shape], 0))
return params_grad
@ops.RegisterGradient("GatherV2")
def _GatherV2Grad(op: ops.Operation, grad):
"""Gradient for GatherV2 op."""
# params can be large, so colocate the shape calculation with it.
#
# params can be very large for sparse model, array_ops.shape raises
# exception on the Windows platform when any dimension is larger than
# int32. params_shape is not used in optimizer apply_sparse gradients,
# so it's fine to convert it back to int32 regardless of truncation.
params = op.inputs[0]
with ops.colocate_with(params):
params_shape = array_ops.shape(params, out_type=ops.dtypes.int64)
params_shape = math_ops.cast(params_shape, dtypes.int32)
indices = op.inputs[1]
indices_size = array_ops.expand_dims(array_ops.size(indices), 0)
axis = op.inputs[2]
axis_static = tensor_util.constant_value(axis)
batch_dims = int(op.get_attr("batch_dims"))
if batch_dims < 0:
if indices.shape.ndims is None:
raise ValueError(
f"Currently, it is unsupported to take the gradient of tf.gather "
f"when batch_dims < 0 and the rank of the indices is unknown. Please "
f"pass a positive batch_dims or use tf.ensure_shape to update the "
f"shape of indices when calling tf.gather. Got "
f"batch_dims={batch_dims} and indices={indices}")
batch_dims += indices.shape.ndims
# For axis 0 gathers, build an appropriately shaped IndexedSlices.
if axis_static == 0:
if context.executing_eagerly():
with ops.device(indices_size.device):
params_tail_shape = array_ops.identity(params_shape)[1:]
else:
params_tail_shape = params_shape[1:]
values_shape = array_ops.concat([indices_size, params_tail_shape], 0)
values = array_ops.reshape(
_IndexedSlicesToTensorNoWarning(grad), values_shape)
indices = array_ops.reshape(indices, indices_size)
params_grad = indexed_slices_lib.IndexedSlices(values, indices,
params_shape)
else:
# Handle axis by transposing the axis dimension to be the first non-batch
# dimension, compute the gradient and transpose the result back.
outer_shape = params_shape[:axis]
inner_shape = params_shape[axis:][1:]
values_shape = array_ops.concat([outer_shape, [-1], inner_shape], 0)
values_dims = array_ops.size(values_shape)
axis_dims = array_ops.size(outer_shape)
outer_batches_indices = math_ops.range(batch_dims)
batch_axis_indices = math_ops.range(batch_dims, axis_dims)
inner_axes_indices = math_ops.range(axis_dims + 1, values_dims)
values = array_ops.reshape(
_IndexedSlicesToTensorNoWarning(grad), values_shape)
# Move values[axis] up to values[batch_dims]
transpose_dims = array_ops.concat([
outer_batches_indices, [axis_dims], batch_axis_indices,
inner_axes_indices
], 0)
values_transpose = array_ops.transpose(values, transpose_dims)
params_shape_transpose = array_ops.gather(params_shape, transpose_dims)
params_grad = _BatchGatherGrad(params_shape_transpose, values_transpose,
indices, batch_dims, params_shape[axis])
# Inverts the above transpose by moving dimension batch_dims back to its
# original position.
invert_transpose_dims = array_ops.concat([
outer_batches_indices, batch_axis_indices + 1, [batch_dims],
inner_axes_indices
], 0)
params_grad = array_ops.transpose(params_grad, invert_transpose_dims)
if not isinstance(params_grad, indexed_slices_lib.IndexedSlices):
# Prevents mismatches in shapes when some tensor dimensions are zero.
params_grad = array_ops.reshape(
params_grad,
array_ops.shape(params)
)
return [params_grad, None, None]
@ops.RegisterGradient("GatherNd")
def _GatherNdGrad(op: ops.Operation, grad):
ref = op.inputs[0]
indices = op.inputs[1]
ref_shape = array_ops.shape(ref, out_type=indices.dtype)
if indices.shape.ndims == 2 and indices.shape.dims[-1].value == 1:
ref_grad = indexed_slices_lib.IndexedSlices(
grad, array_ops.squeeze(indices, axis=-1), ref_shape)
else:
ref_grad = array_ops.scatter_nd(indices, grad, ref_shape)
return [ref_grad, None]
@ops.RegisterGradient("ResourceGatherNd")
def _ResourceGatherNdGrad(op: ops.Operation, grad): # pylint: disable=missing-docstring
ref = op.inputs[0]
indices = op.inputs[1]
ref_shape = gen_resource_variable_ops.variable_shape(ref, indices.dtype)
if indices.shape.ndims == 2 and indices.shape.dims[-1].value == 1:
ref_grad = indexed_slices_lib.IndexedSlices(
grad, array_ops.squeeze(indices, axis=-1), ref_shape)
else:
ref_grad = array_ops.scatter_nd(indices, grad, ref_shape)
return [ref_grad, None]
@ops.RegisterGradient("CheckNumerics")
def _CheckNumericsGrad(op: ops.Operation, grad):
"""Gradient for check_numerics op."""
return array_ops.check_numerics(
grad,
"Not a number (NaN) or infinity (Inf) values detected in gradient. %s" %
op.get_attr("message"))
@ops.RegisterGradient("CheckNumericsV2")
def _CheckNumericsV2Grad(op: ops.Operation, grad):
"""Gradient for check_numerics op."""
return array_ops.check_numerics_v2(
grad,
"Not a number (NaN) or infinity (Inf) values detected in gradient. %s" %
op.get_attr("message"))
@ops.RegisterGradient("PlaceholderWithDefault")
@ops.RegisterGradient("Identity")
def _IdGrad(_, grad):
return grad
@ops.RegisterGradient("_EagerConst")
def _EagerConstGrad(_, grad):
raise AssertionError(
"This op should never interact with gradient APIs. Please file a bug.")
@ops.RegisterGradient("RefIdentity")
def _RefIdGrad(_, grad):
return grad
@ops.RegisterGradient("IdentityN")
def _IdNGrad(_, *grad):
return grad
ops.NotDifferentiable("StopGradient")
@ops.RegisterGradient("Reshape")
def _ReshapeGrad(op: ops.Operation, grad):
return [
array_ops.reshape(
_IndexedSlicesToTensorNoWarning(grad), array_ops.shape(op.inputs[0])),
None
]
ops.NotDifferentiable("InvertPermutation")
def _ReshapeToInput(op: ops.Operation, grad):
"""Reshapes the gradient to the shape of the original input."""
return array_ops.reshape(
_IndexedSlicesToTensorNoWarning(grad), array_ops.shape(op.inputs[0]))
@ops.RegisterGradient("ExpandDims")
def _ExpandDimsGrad(op: ops.Operation, grad):
return [_ReshapeToInput(op, grad), None]
@ops.RegisterGradient("Squeeze")
def _SqueezeGrad(op: ops.Operation, grad):
return _ReshapeToInput(op, grad)
@ops.RegisterGradient("Transpose")
def _TransposeGrad(op: ops.Operation, grad):
"""Returns unshuffle(grad)."""
p = op.inputs[1]
return [array_ops.transpose(grad, array_ops.invert_permutation(p)), None]
@ops.RegisterGradient("ConjugateTranspose")
def _ConjugateTransposeGrad(op: ops.Operation, grad):
"""Returns conj(unshuffle(grad))."""
p = op.inputs[1]
return [
array_ops.transpose(
grad, array_ops.invert_permutation(p), conjugate=True), None
]
ops.NotDifferentiable("Shape")
ops.NotDifferentiable("ShapeN")
ops.NotDifferentiable("Rank")
ops.NotDifferentiable("Size")
@ops.RegisterGradient("Tile")
def _TileGrad(op: ops.Operation, grad):
"""Sum reduces grad along the tiled dimensions."""
input_shape = array_ops.shape(op.inputs[0], out_type=op.inputs[1].dtype)
# We interleave multiples and input_shape to get split_shape,
# reshape grad to split_shape, and reduce along all even
# dimensions (the tiled dimensions) to get the result
# with shape input_shape. For example
# input_shape = [20, 30, 40]
# multiples = [2, 3, 4]
# split_shape = [2, 20, 3, 30, 4, 40]
# axes = [0, 2, 4]
split_shape = array_ops.reshape(
array_ops.transpose(array_ops_stack.stack([op.inputs[1], input_shape])),
[-1])
axes = math_ops.range(0, array_ops.size(split_shape), 2)
# Sum reduces grad along the first dimension for IndexedSlices
if isinstance(grad, indexed_slices_lib.IndexedSlices):
input_shape_0 = math_ops.cast(input_shape[0], grad.indices.dtype)
grad = math_ops.unsorted_segment_sum(
grad.values, math_ops.mod(grad.indices, input_shape_0), input_shape_0)
split_shape = array_ops.concat([[1], split_shape[1:]], axis=0)
input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes)
# Fix shape inference
if not context.executing_eagerly():
input_grad.set_shape(op.inputs[0].get_shape())
return [input_grad, None]
ops.NotDifferentiable("BroadcastGradientArgs")
def _PadGrad(op: ops.Operation, grad):
"""Gradient for Pad."""
# Pad introduces values around the original tensor, so the gradient function
# slices the original shape out of the gradient."""
x = op.inputs[0]
a = op.inputs[1] # [Rank(x), 2]
# Takes a slice of a. The 1st column. [Rank(x), 1].
pad_before = array_ops.slice(a, [0, 0],
array_ops_stack.stack([array_ops.rank(x), 1]))
# Make it a 1-D tensor.
begin = array_ops.reshape(pad_before, [-1])
sizes = array_ops.shape(x, out_type=begin.dtype)
x_grad = array_ops.slice(grad, begin, sizes)
if len(op.inputs) == 3:
return x_grad, None, None
else:
return x_grad, None
ops.RegisterGradient("Pad")(_PadGrad)
ops.RegisterGradient("PadV2")(_PadGrad)
# ReverseSequence is just a permutation. The gradient permutes back.
@ops.RegisterGradient("ReverseSequence")
def _ReverseSequenceGrad(op: ops.Operation, grad):
seq_lengths = op.inputs[1]
return [
array_ops.reverse_sequence(
grad,
batch_axis=op.get_attr("batch_dim"),
seq_axis=op.get_attr("seq_dim"),
seq_lengths=seq_lengths), None
]
@ops.RegisterGradient("Reverse")
def _ReverseGrad(op: ops.Operation, grad):
reverse_dims = op.inputs[1]
return gen_array_ops.reverse(grad, reverse_dims), None
@ops.RegisterGradient("ReverseV2")
def _ReverseV2Grad(op: ops.Operation, grad):
axis = op.inputs[1]
return array_ops.reverse_v2(grad, axis), None
@ops.RegisterGradient("SpaceToBatch")
def _SpaceToBatchGrad(op: ops.Operation, grad):
# Its gradient is the opposite op: BatchToSpace.
block_size = op.get_attr("block_size")
return [
array_ops.batch_to_space(grad, op.inputs[1], block_size=block_size), None
]
@ops.RegisterGradient("SpaceToBatchND")
def _SpaceToBatchNDGrad(op: ops.Operation, grad):
# Its gradient is the opposite op: BatchToSpaceND.
return [
array_ops.batch_to_space_nd(grad, op.inputs[1], op.inputs[2]), None, None
]
@ops.RegisterGradient("BatchToSpace")
def _BatchToSpaceGrad(op: ops.Operation, grad):
# Its gradient is the opposite op: SpaceToBatch.
block_size = op.get_attr("block_size")
return [
array_ops.space_to_batch(grad, op.inputs[1], block_size=block_size), None
]
@ops.RegisterGradient("BatchToSpaceND")
def _BatchToSpaceNDGrad(op: ops.Operation, grad):
# Its gradient is the opposite op: SpaceToBatchND.
return [
array_ops.space_to_batch_nd(grad, op.inputs[1], op.inputs[2]), None, None
]
@ops.RegisterGradient("SpaceToDepth")
def _SpaceToDepthGrad(op: ops.Operation, grad):
# Its gradient is the opposite op: DepthToSpace.
block_size = op.get_attr("block_size")
data_format = op.get_attr("data_format")
if data_format == "NCHW_VECT_C":
raise ValueError("Cannot compute SpaceToDepth gradient with NCHW_VECT_C. "
"NCHW_VECT_C requires qint8 data type.")
return array_ops.depth_to_space(grad, block_size, data_format=data_format)
@ops.RegisterGradient("DepthToSpace")
def _DepthToSpaceGrad(op: ops.Operation, grad):
# Its gradient is the opposite op: SpaceToDepth.
block_size = op.get_attr("block_size")
data_format = op.get_attr("data_format")
if data_format == "NCHW_VECT_C":
raise ValueError("Cannot compute DepthToSpace gradient with NCHW_VECT_C. "
"NCHW_VECT_C requires qint8 data type.")
return array_ops.space_to_depth(grad, block_size, data_format=data_format)
ops.NotDifferentiable("OneHot")
@ops.RegisterGradient("MirrorPad")
def _MirrorPadGrad(op: ops.Operation, grad):
mode = op.get_attr("mode")
return [gen_array_ops.mirror_pad_grad(grad, op.inputs[1], mode=mode), None]
@ops.RegisterGradient("MirrorPadGrad")
def _MirrorPadGradGrad(op: ops.Operation, grad):
mode = op.get_attr("mode")
return [gen_array_ops.mirror_pad(grad, op.inputs[1], mode=mode), None]
@ops.RegisterGradient("QuantizeAndDequantize")
def _QuantizeAndDequantizeGrad(_, grad):
return grad
@ops.RegisterGradient("QuantizeAndDequantizeV2")
def _QuantizeAndDequantizeV2Grad(_, grad):
return [grad, None, None]
@ops.RegisterGradient("QuantizeAndDequantizeV3")
def _QuantizeAndDequantizeV3Grad(_, grad):
# Only propagate the gradient for the unquantized input.
return [grad, None, None, None]
@ops.RegisterGradient("ExtractImagePatches")
def _ExtractImagePatchesGrad(op: ops.Operation, grad): # pylint:disable=missing-function-docstring
input_bhwc = array_ops.shape(op.inputs[0], out_type=dtypes.int64)
batch_size, rows_in, cols_in, channels = array_ops_stack.unstack(input_bhwc)
output_bhwc = array_ops.shape(op.outputs[0], out_type=dtypes.int64)
rows_out, cols_out = array_ops_stack.unstack(output_bhwc[1:3])
_, ksize_r, ksize_c, _ = op.get_attr("ksizes")
# Create indices matrix for input tensor.
# Note that 0 is preserved for padding location,
# so indices for input start from 1 to 1 + rows_in * cols_in.
input_indices_num = rows_in * cols_in
# XLA version of extract_image_patches does not support int64,
# using float32 instead.
input_idx = array_ops.reshape(
math_ops.range(1, input_indices_num + 1, dtype=ops.dtypes.float32),
(1, rows_in, cols_in, 1),
)
input_idx_patched = gen_array_ops.extract_image_patches(
input_idx, op.get_attr("ksizes"), op.get_attr("strides"),
op.get_attr("rates"), op.get_attr("padding"))
input_idx_patched = math_ops.cast(input_idx_patched, dtypes.int64)
grad_expanded = array_ops.transpose(
array_ops.reshape(
_IndexedSlicesToTensorNoWarning(grad),
(batch_size, rows_out, cols_out, ksize_r, ksize_c, channels)),
(1, 2, 3, 4, 0, 5))
grad_flat = array_ops.reshape(grad_expanded, (-1, batch_size * channels))
# Shift all input indices back. Padding locations will have "-1" value
# which is fortunately ignored by segmented sum.
segment_ids = array_ops.reshape(input_idx_patched, [-1]) - 1
grad_out = math_ops.unsorted_segment_sum(
grad_flat, segment_ids, num_segments=input_indices_num
)
grad_out = array_ops.reshape(
grad_out, (rows_in, cols_in, batch_size, channels)
)
grad_out = array_ops.transpose(grad_out, (2, 0, 1, 3))
return [grad_out]
@ops.RegisterGradient("ExtractVolumePatches")
def _ExtractVolumePatchesGrad(op: ops.Operation, grad): # pylint:disable=missing-function-docstring
batch_size, planes_in, rows_in, cols_in, channels = [
dim.value for dim in op.inputs[0].shape.dims
]
input_bphwc = array_ops.shape(op.inputs[0])
batch_size = input_bphwc[0]
channels = input_bphwc[4]
# Create indices matrix for input tensor.
# Note that 0 is preserved for padding location,
# so indices for input start from 1 to 1 + rows_in * cols_in.
input_indices_num = 1 + planes_in * rows_in * cols_in
input_idx = array_ops.reshape(
math_ops.range(1, input_indices_num, dtype=ops.dtypes.int64),
(1, planes_in, rows_in, cols_in, 1))
input_idx_patched = gen_array_ops.extract_volume_patches(
input_idx, op.get_attr("ksizes"), op.get_attr("strides"),
op.get_attr("padding"))
# Create indices matrix for output tensor.
_, planes_out, rows_out, cols_out, _ = [
dim.value for dim in op.outputs[0].shape.dims
]
_, ksize_p, ksize_r, ksize_c, _ = op.get_attr("ksizes")
# Indices for output start from 0.
prc_indices_num = planes_out * rows_out * cols_out
output_indices_num = prc_indices_num * ksize_p * ksize_r * ksize_c
output_idx = array_ops.reshape(
math_ops.range(output_indices_num, dtype=ops.dtypes.int64),
(1, planes_out, rows_out, cols_out, ksize_p * ksize_r * ksize_c))
# Construct mapping table for indices: (input -> output).
idx_matrix = array_ops.concat([
array_ops.expand_dims(input_idx_patched, axis=-1),
array_ops.expand_dims(output_idx, axis=-1)
],
axis=-1)
idx_map = array_ops.reshape(idx_matrix, (-1, 2))
sp_shape = (input_indices_num, output_indices_num)
sp_mat_full = sparse_tensor.SparseTensor(
idx_map, array_ops.ones([output_indices_num], dtype=grad.dtype), sp_shape)
# Remove all padding locations [0, :].
sp_mat = sparse_ops.sparse_slice(sp_mat_full, (1, 0),
(input_indices_num - 1, output_indices_num))
grad_expanded = array_ops.transpose(
array_ops.reshape(
_IndexedSlicesToTensorNoWarning(grad),
(batch_size, planes_out, rows_out, cols_out, ksize_p, ksize_r,
ksize_c, channels)), (1, 2, 3, 4, 5, 6, 0, 7))
grad_flat = array_ops.reshape(grad_expanded, (-1, batch_size * channels))
jac = sparse_ops.sparse_tensor_dense_matmul(sp_mat, grad_flat)
grad_out = array_ops.reshape(
jac, (planes_in, rows_in, cols_in, batch_size, channels))
grad_out = array_ops.transpose(grad_out, (3, 0, 1, 2, 4))
return [grad_out]
@ops.RegisterGradient("ScatterNd")
def _ScatterNdGrad(op: ops.Operation, grad):
indices = op.inputs[0]
updates_grad = array_ops.gather_nd(grad, indices)
return [None, updates_grad, None]
@ops.RegisterGradient("TensorScatterUpdate")
def _TensorScatterUpdateGrad(op: ops.Operation, grad):
indices = op.inputs[1]
updates_grad = array_ops.gather_nd(grad, indices)
tensor_grad = array_ops.tensor_scatter_update(
array_ops.identity(grad), indices,
array_ops.zeros_like(op.inputs[2], dtype=grad.dtype))
return [tensor_grad, None, updates_grad]
@ops.RegisterGradient("TensorScatterAdd")
def _TensorScatterAddGrad(op: ops.Operation, grad):
indices = op.inputs[1]
updates_grad = array_ops.gather_nd(grad, indices)
tensor_grad = array_ops.identity(grad)
return [tensor_grad, None, updates_grad]
def _TensorScatterMinOrMaxGrad(op: ops.Operation, grad):
"""Gradient for TensorScatterMin and TensorScatterMax."""
indices = op.inputs[1]
x = op.inputs[0]
y = op.inputs[2]
output = op.outputs[0]
x_indicators = math_ops.cast(math_ops.equal(x, output), grad.dtype)
y_output = array_ops.gather_nd(output, indices)
y_indicators = math_ops.cast(math_ops.equal(y, y_output), grad.dtype)
ys_indicators = array_ops.scatter_nd(
indices, y_indicators, array_ops.shape(x, out_type=indices.dtype))
indicators = x_indicators + ys_indicators # All elements are >= 1.
# If there are multiple minimum or maximum elements then the gradient will be
# divided between them.
x_grad = grad * x_indicators / indicators
y_grad = array_ops.gather_nd(grad / indicators, indices) * y_indicators
return [x_grad, None, y_grad]
@ops.RegisterGradient("TensorScatterMax")
def _TensorScatterMaxGrad(op: ops.Operation, grad):
"""Gradient for TensorScatterMax op."""
return _TensorScatterMinOrMaxGrad(op, grad)
@ops.RegisterGradient("TensorScatterMin")
def _TensorScatterMinGrad(op: ops.Operation, grad):
"""Gradient for TensorScatterMin op."""
return _TensorScatterMinOrMaxGrad(op, grad)
@ops.RegisterGradient("TensorScatterSub")
def _TensorScatterSubGrad(op: ops.Operation, grad):
indices = op.inputs[1]
updates_grad = array_ops.gather_nd(grad, indices)
tensor_grad = array_ops.identity(grad)
return [tensor_grad, None, -updates_grad]
@ops.RegisterGradient("ScatterNdNonAliasingAdd")
def _ScatterNdNonAliasingAddGrad(op: ops.Operation, grad):
indices = op.inputs[1]
updates_grad = array_ops.gather_nd(grad, indices)
return [grad, None, updates_grad]
@ops.RegisterGradient("BroadcastTo")
def _BroadcastToGrad(op: ops.Operation, grad): # pylint:disable=missing-function-docstring
input_value = op.inputs[0]
broadcast_shape = op.inputs[1]
shape_dtype = dtypes.int32
if isinstance(broadcast_shape, tensor.Tensor):
shape_dtype = broadcast_shape.dtype
input_value_shape = array_ops.shape(input_value, out_type=shape_dtype)
if not isinstance(broadcast_shape, ops.EagerTensor):
broadcast_shape_static = tensor_shape.TensorShape(
tensor_util.try_evaluate_constant(broadcast_shape))
if broadcast_shape_static.is_fully_defined():
broadcast_shape = constant_op.constant(
broadcast_shape_static.as_list(), dtype=shape_dtype)
_, reduction_axes = gen_array_ops.broadcast_gradient_args(
broadcast_shape, input_value_shape)
updates_grad_reshaped = math_ops.reduce_sum(
grad, axis=reduction_axes, keepdims=True)
updates_grad = array_ops.reshape(updates_grad_reshaped, input_value_shape)
return [updates_grad, None]