3RNN/Lib/site-packages/tensorflow/python/ops/gen_batch_ops.py
2024-05-26 19:49:15 +02:00

700 lines
36 KiB
Python

"""Python wrappers around TensorFlow ops.
This file is MACHINE GENERATED! Do not edit.
"""
import collections
from tensorflow.python import pywrap_tfe as pywrap_tfe
from tensorflow.python.eager import context as _context
from tensorflow.python.eager import core as _core
from tensorflow.python.eager import execute as _execute
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.security.fuzzing.py import annotation_types as _atypes
from tensorflow.python.framework import op_def_registry as _op_def_registry
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import op_def_library as _op_def_library
from tensorflow.python.util.deprecation import deprecated_endpoints
from tensorflow.python.util import dispatch as _dispatch
from tensorflow.python.util.tf_export import tf_export
from typing import TypeVar, List, Any
from typing_extensions import Annotated
_BatchOutput = collections.namedtuple(
"Batch",
["batched_tensors", "batch_index", "id"])
def batch(in_tensors, num_batch_threads: int, max_batch_size: int, batch_timeout_micros: int, grad_timeout_micros: int, max_enqueued_batches:int=10, allowed_batch_sizes=[], container:str="", shared_name:str="", batching_queue:str="", name=None):
r"""Batches all input tensors nondeterministically.
When many instances of this Op are being run concurrently with the same
container/shared_name in the same device, some will output zero-shaped Tensors
and others will output Tensors of size up to max_batch_size.
All Tensors in in_tensors are batched together (so, for example, labels and
features should be batched with a single instance of this operation.
Each invocation of batch emits an `id` scalar which will be used to identify
this particular invocation when doing unbatch or its gradient.
Each op which emits a non-empty batch will also emit a non-empty batch_index
Tensor, which, is a [K, 3] matrix where each row contains the invocation's id,
start, and length of elements of each set of Tensors present in batched_tensors.
Batched tensors are concatenated along the first dimension, and all tensors in
in_tensors must have the first dimension of the same size.
in_tensors: The tensors to be batched.
num_batch_threads: Number of scheduling threads for processing batches of work.
Determines the number of batches processed in parallel.
max_batch_size: Batch sizes will never be bigger than this.
batch_timeout_micros: Maximum number of microseconds to wait before outputting
an incomplete batch.
allowed_batch_sizes: Optional list of allowed batch sizes. If left empty, does
nothing. Otherwise, supplies a list of batch sizes, causing the op to pad
batches up to one of those sizes. The entries must increase monotonically, and
the final entry must equal max_batch_size.
grad_timeout_micros: The timeout to use for the gradient. See Unbatch.
batched_tensors: Either empty tensors or a batch of concatenated Tensors.
batch_index: If out_tensors is non-empty, has information to invert it.
container: Controls the scope of sharing of this batch.
id: always contains a scalar with a unique ID for this invocation of Batch.
shared_name: Concurrently running instances of batch in the same device with the
same container and shared_name will batch their elements together. If left
empty, the op name will be used as the shared name.
T: the types of tensors to be batched.
Args:
in_tensors: A list of `Tensor` objects.
num_batch_threads: An `int`.
max_batch_size: An `int`.
batch_timeout_micros: An `int`.
grad_timeout_micros: An `int`.
max_enqueued_batches: An optional `int`. Defaults to `10`.
allowed_batch_sizes: An optional list of `ints`. Defaults to `[]`.
container: An optional `string`. Defaults to `""`.
shared_name: An optional `string`. Defaults to `""`.
batching_queue: An optional `string`. Defaults to `""`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (batched_tensors, batch_index, id).
batched_tensors: A list of `Tensor` objects. Has the same type as `in_tensors`.
batch_index: A `Tensor` of type `int64`.
id: A `Tensor` of type `int64`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Batch", name, in_tensors, "num_batch_threads",
num_batch_threads, "max_batch_size", max_batch_size,
"max_enqueued_batches", max_enqueued_batches, "batch_timeout_micros",
batch_timeout_micros, "allowed_batch_sizes", allowed_batch_sizes,
"grad_timeout_micros", grad_timeout_micros, "container", container,
"shared_name", shared_name, "batching_queue", batching_queue)
_result = _BatchOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return batch_eager_fallback(
in_tensors, num_batch_threads=num_batch_threads,
max_batch_size=max_batch_size,
max_enqueued_batches=max_enqueued_batches,
batch_timeout_micros=batch_timeout_micros,
allowed_batch_sizes=allowed_batch_sizes,
grad_timeout_micros=grad_timeout_micros, container=container,
shared_name=shared_name, batching_queue=batching_queue, name=name,
ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
num_batch_threads = _execute.make_int(num_batch_threads, "num_batch_threads")
max_batch_size = _execute.make_int(max_batch_size, "max_batch_size")
batch_timeout_micros = _execute.make_int(batch_timeout_micros, "batch_timeout_micros")
grad_timeout_micros = _execute.make_int(grad_timeout_micros, "grad_timeout_micros")
if max_enqueued_batches is None:
max_enqueued_batches = 10
max_enqueued_batches = _execute.make_int(max_enqueued_batches, "max_enqueued_batches")
if allowed_batch_sizes is None:
allowed_batch_sizes = []
if not isinstance(allowed_batch_sizes, (list, tuple)):
raise TypeError(
"Expected list for 'allowed_batch_sizes' argument to "
"'batch' Op, not %r." % allowed_batch_sizes)
allowed_batch_sizes = [_execute.make_int(_i, "allowed_batch_sizes") for _i in allowed_batch_sizes]
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
if batching_queue is None:
batching_queue = ""
batching_queue = _execute.make_str(batching_queue, "batching_queue")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Batch", in_tensors=in_tensors, num_batch_threads=num_batch_threads,
max_batch_size=max_batch_size,
batch_timeout_micros=batch_timeout_micros,
grad_timeout_micros=grad_timeout_micros,
max_enqueued_batches=max_enqueued_batches,
allowed_batch_sizes=allowed_batch_sizes, container=container,
shared_name=shared_name, batching_queue=batching_queue,
name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("num_batch_threads", _op._get_attr_int("num_batch_threads"),
"max_batch_size", _op._get_attr_int("max_batch_size"),
"max_enqueued_batches",
_op._get_attr_int("max_enqueued_batches"),
"batch_timeout_micros",
_op._get_attr_int("batch_timeout_micros"),
"allowed_batch_sizes", _op.get_attr("allowed_batch_sizes"),
"grad_timeout_micros", _op._get_attr_int("grad_timeout_micros"),
"container", _op.get_attr("container"), "shared_name",
_op.get_attr("shared_name"), "batching_queue",
_op.get_attr("batching_queue"), "T", _op.get_attr("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"Batch", _inputs_flat, _attrs, _result)
_result = [_result[:len(in_tensors)]] + _result[len(in_tensors):]
_result = _BatchOutput._make(_result)
return _result
Batch = tf_export("raw_ops.Batch")(_ops.to_raw_op(batch))
def batch_eager_fallback(in_tensors, num_batch_threads: int, max_batch_size: int, batch_timeout_micros: int, grad_timeout_micros: int, max_enqueued_batches: int, allowed_batch_sizes, container: str, shared_name: str, batching_queue: str, name, ctx):
num_batch_threads = _execute.make_int(num_batch_threads, "num_batch_threads")
max_batch_size = _execute.make_int(max_batch_size, "max_batch_size")
batch_timeout_micros = _execute.make_int(batch_timeout_micros, "batch_timeout_micros")
grad_timeout_micros = _execute.make_int(grad_timeout_micros, "grad_timeout_micros")
if max_enqueued_batches is None:
max_enqueued_batches = 10
max_enqueued_batches = _execute.make_int(max_enqueued_batches, "max_enqueued_batches")
if allowed_batch_sizes is None:
allowed_batch_sizes = []
if not isinstance(allowed_batch_sizes, (list, tuple)):
raise TypeError(
"Expected list for 'allowed_batch_sizes' argument to "
"'batch' Op, not %r." % allowed_batch_sizes)
allowed_batch_sizes = [_execute.make_int(_i, "allowed_batch_sizes") for _i in allowed_batch_sizes]
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
if batching_queue is None:
batching_queue = ""
batching_queue = _execute.make_str(batching_queue, "batching_queue")
_attr_T, in_tensors = _execute.convert_to_mixed_eager_tensors(in_tensors, ctx)
_inputs_flat = list(in_tensors)
_attrs = ("num_batch_threads", num_batch_threads, "max_batch_size",
max_batch_size, "max_enqueued_batches", max_enqueued_batches,
"batch_timeout_micros", batch_timeout_micros, "allowed_batch_sizes",
allowed_batch_sizes, "grad_timeout_micros", grad_timeout_micros,
"container", container, "shared_name", shared_name, "batching_queue",
batching_queue, "T", _attr_T)
_result = _execute.execute(b"Batch", len(in_tensors) + 2,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Batch", _inputs_flat, _attrs, _result)
_result = [_result[:len(in_tensors)]] + _result[len(in_tensors):]
_result = _BatchOutput._make(_result)
return _result
def batch_function(in_tensors, captured_tensors, f, num_batch_threads: int, max_batch_size: int, batch_timeout_micros: int, Tout, max_enqueued_batches:int=10, allowed_batch_sizes=[], container:str="", shared_name:str="", batching_queue:str="", low_priority_max_batch_size:int=0, low_priority_batch_timeout_micros:int=0, low_priority_allowed_batch_sizes=[], low_priority_max_enqueued_batches:int=0, enable_large_batch_splitting:bool=False, name=None):
r"""Batches all the inputs tensors to the computation done by the function.
So, for example, in the following code
```python
# This input will be captured.
y = tf.placeholder_with_default(1.0, shape=[])
@tf.Defun(tf.float32)
def computation(a):
return tf.matmul(a, a) + y
b = gen_batch_ops.batch_function(
f=computation
in_tensors=[a],
captured_tensors=computation.captured_inputs,
Tout=[o.type for o in computation.definition.signature.output_arg],
num_batch_threads=1,
max_batch_size=10,
batch_timeout_micros=100000, # 100ms
allowed_batch_sizes=[3, 10],
batching_queue="")
```
If more than one session.run call is simultaneously trying to compute `b`
the values of `a` will be gathered, non-deterministically concatenated
along the first axis, and only one thread will run the computation.
Assumes that all arguments of the function are Tensors which will be batched
along their first dimension.
Arguments that are captured, are not batched. The session.run call which does
the concatenation, will use the values of the captured tensors available to it.
Therefore, typical uses of captured tensors should involve values which remain
unchanged across session.run calls. Inference is a good example of this.
SparseTensor is not supported. The return value of the decorated function
must be a Tensor or a list/tuple of Tensors.
Args:
in_tensors: A list of `Tensor` objects. The tensors to be batched.
captured_tensors: A list of `Tensor` objects.
The tensors which are captured in the function, and don't need
to be batched.
f: A function decorated with @Defun.
num_batch_threads: An `int`.
Number of scheduling threads for processing batches of work.
Determines the number of batches processed in parallel.
max_batch_size: An `int`. Batch sizes will never be bigger than this.
batch_timeout_micros: An `int`.
Maximum number of microseconds to wait before outputting
an incomplete batch.
Tout: A list of `tf.DTypes` that has length `>= 1`.
the types of the output tensors.
max_enqueued_batches: An optional `int`. Defaults to `10`.
Maximum number of batches enqueued. Default: 10.
allowed_batch_sizes: An optional list of `ints`. Defaults to `[]`.
Optional list of allowed batch sizes. If left empty, does
nothing. Otherwise, supplies a list of batch sizes, causing the op to pad
batches up to one of those sizes. The entries must increase monotonically.
If enable_large_batch_splitting is false (i.e., large-input-split is not
enabled) the final entry must equal max_batch_size.
container: An optional `string`. Defaults to `""`.
Controls the scope of sharing of this batch.
shared_name: An optional `string`. Defaults to `""`.
Concurrently running instances of batch in the same device with the
same container and shared_name will batch their elements together. If left
empty, the op name will be used as the shared name.
batching_queue: An optional `string`. Defaults to `""`.
low_priority_max_batch_size: An optional `int`. Defaults to `0`.
low_priority_batch_timeout_micros: An optional `int`. Defaults to `0`.
low_priority_allowed_batch_sizes: An optional list of `ints`. Defaults to `[]`.
low_priority_max_enqueued_batches: An optional `int`. Defaults to `0`.
enable_large_batch_splitting: An optional `bool`. Defaults to `False`.
input with a large size (i.e., larger than the largest value of
`allowed_batch_sizes`) will be splitted into multiple batches with batch size.
name: A name for the operation (optional).
Returns:
A list of `Tensor` objects of type `Tout`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "BatchFunction", name, in_tensors, captured_tensors, "f", f,
"num_batch_threads", num_batch_threads, "max_batch_size",
max_batch_size, "batch_timeout_micros", batch_timeout_micros,
"max_enqueued_batches", max_enqueued_batches, "allowed_batch_sizes",
allowed_batch_sizes, "container", container, "shared_name",
shared_name, "batching_queue", batching_queue,
"low_priority_max_batch_size", low_priority_max_batch_size,
"low_priority_batch_timeout_micros",
low_priority_batch_timeout_micros, "low_priority_allowed_batch_sizes",
low_priority_allowed_batch_sizes, "low_priority_max_enqueued_batches",
low_priority_max_enqueued_batches, "Tout", Tout,
"enable_large_batch_splitting", enable_large_batch_splitting)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return batch_function_eager_fallback(
in_tensors, captured_tensors, f=f,
num_batch_threads=num_batch_threads, max_batch_size=max_batch_size,
batch_timeout_micros=batch_timeout_micros,
max_enqueued_batches=max_enqueued_batches,
allowed_batch_sizes=allowed_batch_sizes, container=container,
shared_name=shared_name, batching_queue=batching_queue,
low_priority_max_batch_size=low_priority_max_batch_size,
low_priority_batch_timeout_micros=low_priority_batch_timeout_micros,
low_priority_allowed_batch_sizes=low_priority_allowed_batch_sizes,
low_priority_max_enqueued_batches=low_priority_max_enqueued_batches,
Tout=Tout,
enable_large_batch_splitting=enable_large_batch_splitting,
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
num_batch_threads = _execute.make_int(num_batch_threads, "num_batch_threads")
max_batch_size = _execute.make_int(max_batch_size, "max_batch_size")
batch_timeout_micros = _execute.make_int(batch_timeout_micros, "batch_timeout_micros")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'batch_function' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
if max_enqueued_batches is None:
max_enqueued_batches = 10
max_enqueued_batches = _execute.make_int(max_enqueued_batches, "max_enqueued_batches")
if allowed_batch_sizes is None:
allowed_batch_sizes = []
if not isinstance(allowed_batch_sizes, (list, tuple)):
raise TypeError(
"Expected list for 'allowed_batch_sizes' argument to "
"'batch_function' Op, not %r." % allowed_batch_sizes)
allowed_batch_sizes = [_execute.make_int(_i, "allowed_batch_sizes") for _i in allowed_batch_sizes]
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
if batching_queue is None:
batching_queue = ""
batching_queue = _execute.make_str(batching_queue, "batching_queue")
if low_priority_max_batch_size is None:
low_priority_max_batch_size = 0
low_priority_max_batch_size = _execute.make_int(low_priority_max_batch_size, "low_priority_max_batch_size")
if low_priority_batch_timeout_micros is None:
low_priority_batch_timeout_micros = 0
low_priority_batch_timeout_micros = _execute.make_int(low_priority_batch_timeout_micros, "low_priority_batch_timeout_micros")
if low_priority_allowed_batch_sizes is None:
low_priority_allowed_batch_sizes = []
if not isinstance(low_priority_allowed_batch_sizes, (list, tuple)):
raise TypeError(
"Expected list for 'low_priority_allowed_batch_sizes' argument to "
"'batch_function' Op, not %r." % low_priority_allowed_batch_sizes)
low_priority_allowed_batch_sizes = [_execute.make_int(_i, "low_priority_allowed_batch_sizes") for _i in low_priority_allowed_batch_sizes]
if low_priority_max_enqueued_batches is None:
low_priority_max_enqueued_batches = 0
low_priority_max_enqueued_batches = _execute.make_int(low_priority_max_enqueued_batches, "low_priority_max_enqueued_batches")
if enable_large_batch_splitting is None:
enable_large_batch_splitting = False
enable_large_batch_splitting = _execute.make_bool(enable_large_batch_splitting, "enable_large_batch_splitting")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"BatchFunction", in_tensors=in_tensors,
captured_tensors=captured_tensors, f=f,
num_batch_threads=num_batch_threads,
max_batch_size=max_batch_size,
batch_timeout_micros=batch_timeout_micros, Tout=Tout,
max_enqueued_batches=max_enqueued_batches,
allowed_batch_sizes=allowed_batch_sizes,
container=container, shared_name=shared_name,
batching_queue=batching_queue,
low_priority_max_batch_size=low_priority_max_batch_size,
low_priority_batch_timeout_micros=low_priority_batch_timeout_micros,
low_priority_allowed_batch_sizes=low_priority_allowed_batch_sizes,
low_priority_max_enqueued_batches=low_priority_max_enqueued_batches,
enable_large_batch_splitting=enable_large_batch_splitting,
name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("f", _op.get_attr("f"), "num_batch_threads",
_op._get_attr_int("num_batch_threads"), "max_batch_size",
_op._get_attr_int("max_batch_size"), "batch_timeout_micros",
_op._get_attr_int("batch_timeout_micros"),
"max_enqueued_batches",
_op._get_attr_int("max_enqueued_batches"),
"allowed_batch_sizes", _op.get_attr("allowed_batch_sizes"),
"container", _op.get_attr("container"), "shared_name",
_op.get_attr("shared_name"), "batching_queue",
_op.get_attr("batching_queue"), "low_priority_max_batch_size",
_op._get_attr_int("low_priority_max_batch_size"),
"low_priority_batch_timeout_micros",
_op._get_attr_int("low_priority_batch_timeout_micros"),
"low_priority_allowed_batch_sizes",
_op.get_attr("low_priority_allowed_batch_sizes"),
"low_priority_max_enqueued_batches",
_op._get_attr_int("low_priority_max_enqueued_batches"), "Tin",
_op.get_attr("Tin"), "Tcaptured", _op.get_attr("Tcaptured"),
"Tout", _op.get_attr("Tout"), "enable_large_batch_splitting",
_op._get_attr_bool("enable_large_batch_splitting"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"BatchFunction", _inputs_flat, _attrs, _result)
return _result
BatchFunction = tf_export("raw_ops.BatchFunction")(_ops.to_raw_op(batch_function))
def batch_function_eager_fallback(in_tensors, captured_tensors, f, num_batch_threads: int, max_batch_size: int, batch_timeout_micros: int, Tout, max_enqueued_batches: int, allowed_batch_sizes, container: str, shared_name: str, batching_queue: str, low_priority_max_batch_size: int, low_priority_batch_timeout_micros: int, low_priority_allowed_batch_sizes, low_priority_max_enqueued_batches: int, enable_large_batch_splitting: bool, name, ctx):
num_batch_threads = _execute.make_int(num_batch_threads, "num_batch_threads")
max_batch_size = _execute.make_int(max_batch_size, "max_batch_size")
batch_timeout_micros = _execute.make_int(batch_timeout_micros, "batch_timeout_micros")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'batch_function' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
if max_enqueued_batches is None:
max_enqueued_batches = 10
max_enqueued_batches = _execute.make_int(max_enqueued_batches, "max_enqueued_batches")
if allowed_batch_sizes is None:
allowed_batch_sizes = []
if not isinstance(allowed_batch_sizes, (list, tuple)):
raise TypeError(
"Expected list for 'allowed_batch_sizes' argument to "
"'batch_function' Op, not %r." % allowed_batch_sizes)
allowed_batch_sizes = [_execute.make_int(_i, "allowed_batch_sizes") for _i in allowed_batch_sizes]
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
if batching_queue is None:
batching_queue = ""
batching_queue = _execute.make_str(batching_queue, "batching_queue")
if low_priority_max_batch_size is None:
low_priority_max_batch_size = 0
low_priority_max_batch_size = _execute.make_int(low_priority_max_batch_size, "low_priority_max_batch_size")
if low_priority_batch_timeout_micros is None:
low_priority_batch_timeout_micros = 0
low_priority_batch_timeout_micros = _execute.make_int(low_priority_batch_timeout_micros, "low_priority_batch_timeout_micros")
if low_priority_allowed_batch_sizes is None:
low_priority_allowed_batch_sizes = []
if not isinstance(low_priority_allowed_batch_sizes, (list, tuple)):
raise TypeError(
"Expected list for 'low_priority_allowed_batch_sizes' argument to "
"'batch_function' Op, not %r." % low_priority_allowed_batch_sizes)
low_priority_allowed_batch_sizes = [_execute.make_int(_i, "low_priority_allowed_batch_sizes") for _i in low_priority_allowed_batch_sizes]
if low_priority_max_enqueued_batches is None:
low_priority_max_enqueued_batches = 0
low_priority_max_enqueued_batches = _execute.make_int(low_priority_max_enqueued_batches, "low_priority_max_enqueued_batches")
if enable_large_batch_splitting is None:
enable_large_batch_splitting = False
enable_large_batch_splitting = _execute.make_bool(enable_large_batch_splitting, "enable_large_batch_splitting")
_attr_Tin, in_tensors = _execute.convert_to_mixed_eager_tensors(in_tensors, ctx)
_attr_Tcaptured, captured_tensors = _execute.convert_to_mixed_eager_tensors(captured_tensors, ctx)
_inputs_flat = list(in_tensors) + list(captured_tensors)
_attrs = ("f", f, "num_batch_threads", num_batch_threads, "max_batch_size",
max_batch_size, "batch_timeout_micros", batch_timeout_micros,
"max_enqueued_batches", max_enqueued_batches, "allowed_batch_sizes",
allowed_batch_sizes, "container", container, "shared_name", shared_name,
"batching_queue", batching_queue, "low_priority_max_batch_size",
low_priority_max_batch_size, "low_priority_batch_timeout_micros",
low_priority_batch_timeout_micros, "low_priority_allowed_batch_sizes",
low_priority_allowed_batch_sizes, "low_priority_max_enqueued_batches",
low_priority_max_enqueued_batches, "Tin", _attr_Tin, "Tcaptured",
_attr_Tcaptured, "Tout", Tout, "enable_large_batch_splitting",
enable_large_batch_splitting)
_result = _execute.execute(b"BatchFunction", len(Tout), inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"BatchFunction", _inputs_flat, _attrs, _result)
return _result
TV_Unbatch_T = TypeVar("TV_Unbatch_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
def unbatch(batched_tensor: Annotated[Any, TV_Unbatch_T], batch_index: Annotated[Any, _atypes.Int64], id: Annotated[Any, _atypes.Int64], timeout_micros: int, container:str="", shared_name:str="", name=None) -> Annotated[Any, TV_Unbatch_T]:
r"""Reverses the operation of Batch for a single output Tensor.
An instance of Unbatch either receives an empty batched_tensor, in which case it
asynchronously waits until the values become available from a concurrently
running instance of Unbatch with the same container and shared_name, or receives
a non-empty batched_tensor in which case it finalizes all other concurrently
running instances and outputs its own element from the batch.
batched_tensor: The possibly transformed output of Batch. The size of the first
dimension should remain unchanged by the transformations for the operation to
work.
batch_index: The matching batch_index obtained from Batch.
id: The id scalar emitted by Batch.
unbatched_tensor: The Tensor corresponding to this execution.
timeout_micros: Maximum amount of time (in microseconds) to wait to receive the
batched input tensor associated with a given invocation of the op.
container: Container to control resource sharing.
shared_name: Instances of Unbatch with the same container and shared_name are
assumed to possibly belong to the same batch. If left empty, the op name will
be used as the shared name.
Args:
batched_tensor: A `Tensor`.
batch_index: A `Tensor` of type `int64`.
id: A `Tensor` of type `int64`.
timeout_micros: An `int`.
container: An optional `string`. Defaults to `""`.
shared_name: An optional `string`. Defaults to `""`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `batched_tensor`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Unbatch", name, batched_tensor, batch_index, id,
"timeout_micros", timeout_micros, "container", container,
"shared_name", shared_name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return unbatch_eager_fallback(
batched_tensor, batch_index, id, timeout_micros=timeout_micros,
container=container, shared_name=shared_name, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
timeout_micros = _execute.make_int(timeout_micros, "timeout_micros")
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Unbatch", batched_tensor=batched_tensor, batch_index=batch_index,
id=id, timeout_micros=timeout_micros, container=container,
shared_name=shared_name, name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("timeout_micros", _op._get_attr_int("timeout_micros"),
"container", _op.get_attr("container"), "shared_name",
_op.get_attr("shared_name"), "T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"Unbatch", _inputs_flat, _attrs, _result)
_result, = _result
return _result
Unbatch = tf_export("raw_ops.Unbatch")(_ops.to_raw_op(unbatch))
def unbatch_eager_fallback(batched_tensor: Annotated[Any, TV_Unbatch_T], batch_index: Annotated[Any, _atypes.Int64], id: Annotated[Any, _atypes.Int64], timeout_micros: int, container: str, shared_name: str, name, ctx) -> Annotated[Any, TV_Unbatch_T]:
timeout_micros = _execute.make_int(timeout_micros, "timeout_micros")
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
_attr_T, (batched_tensor,) = _execute.args_to_matching_eager([batched_tensor], ctx, [])
batch_index = _ops.convert_to_tensor(batch_index, _dtypes.int64)
id = _ops.convert_to_tensor(id, _dtypes.int64)
_inputs_flat = [batched_tensor, batch_index, id]
_attrs = ("timeout_micros", timeout_micros, "container", container,
"shared_name", shared_name, "T", _attr_T)
_result = _execute.execute(b"Unbatch", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Unbatch", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_UnbatchGrad_T = TypeVar("TV_UnbatchGrad_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
def unbatch_grad(original_input: Annotated[Any, TV_UnbatchGrad_T], batch_index: Annotated[Any, _atypes.Int64], grad: Annotated[Any, TV_UnbatchGrad_T], id: Annotated[Any, _atypes.Int64], container:str="", shared_name:str="", name=None) -> Annotated[Any, TV_UnbatchGrad_T]:
r"""Gradient of Unbatch.
Acts like Batch but using the given batch_index index of batching things as they
become available. This ensures that the gradients are propagated back in the
same session which did the forward pass.
original_input: The input to the Unbatch operation this is the gradient of.
batch_index: The batch_index given to the Unbatch operation this is the gradient
of.
grad: The downstream gradient.
id: The id scalar emitted by Batch.
batched_grad: The return value, either an empty tensor or the batched gradient.
container: Container to control resource sharing.
shared_name: Instances of UnbatchGrad with the same container and shared_name
are assumed to possibly belong to the same batch. If left empty, the op name
will be used as the shared name.
Args:
original_input: A `Tensor`.
batch_index: A `Tensor` of type `int64`.
grad: A `Tensor`. Must have the same type as `original_input`.
id: A `Tensor` of type `int64`.
container: An optional `string`. Defaults to `""`.
shared_name: An optional `string`. Defaults to `""`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `original_input`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "UnbatchGrad", name, original_input, batch_index, grad, id,
"container", container, "shared_name", shared_name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return unbatch_grad_eager_fallback(
original_input, batch_index, grad, id, container=container,
shared_name=shared_name, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"UnbatchGrad", original_input=original_input, batch_index=batch_index,
grad=grad, id=id, container=container,
shared_name=shared_name, name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("container", _op.get_attr("container"), "shared_name",
_op.get_attr("shared_name"), "T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"UnbatchGrad", _inputs_flat, _attrs, _result)
_result, = _result
return _result
UnbatchGrad = tf_export("raw_ops.UnbatchGrad")(_ops.to_raw_op(unbatch_grad))
def unbatch_grad_eager_fallback(original_input: Annotated[Any, TV_UnbatchGrad_T], batch_index: Annotated[Any, _atypes.Int64], grad: Annotated[Any, TV_UnbatchGrad_T], id: Annotated[Any, _atypes.Int64], container: str, shared_name: str, name, ctx) -> Annotated[Any, TV_UnbatchGrad_T]:
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
_attr_T, _inputs_T = _execute.args_to_matching_eager([original_input, grad], ctx, [])
(original_input, grad) = _inputs_T
batch_index = _ops.convert_to_tensor(batch_index, _dtypes.int64)
id = _ops.convert_to_tensor(id, _dtypes.int64)
_inputs_flat = [original_input, batch_index, grad, id]
_attrs = ("container", container, "shared_name", shared_name, "T", _attr_T)
_result = _execute.execute(b"UnbatchGrad", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"UnbatchGrad", _inputs_flat, _attrs, _result)
_result, = _result
return _result