3RNN/Lib/site-packages/tensorflow/python/ops/signal/dct_ops.py
2024-05-26 19:49:15 +02:00

257 lines
10 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Discrete Cosine Transform ops."""
import math as _math
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import smart_cond
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops as _array_ops
from tensorflow.python.ops import math_ops as _math_ops
from tensorflow.python.ops.signal import fft_ops
from tensorflow.python.util import dispatch
from tensorflow.python.util.tf_export import tf_export
def _validate_dct_arguments(input_tensor, dct_type, n, axis, norm):
"""Checks that DCT/IDCT arguments are compatible and well formed."""
if axis != -1:
raise NotImplementedError("axis must be -1. Got: %s" % axis)
if n is not None and n < 1:
raise ValueError("n should be a positive integer or None")
if dct_type not in (1, 2, 3, 4):
raise ValueError("Types I, II, III and IV (I)DCT are supported.")
if dct_type == 1:
if norm == "ortho":
raise ValueError("Normalization is not supported for the Type-I DCT.")
if input_tensor.shape[-1] is not None and input_tensor.shape[-1] < 2:
raise ValueError(
"Type-I DCT requires the dimension to be greater than one.")
if norm not in (None, "ortho"):
raise ValueError(
"Unknown normalization. Expected None or 'ortho', got: %s" % norm)
# TODO(rjryan): Implement `axis` parameter.
@tf_export("signal.dct", v1=["signal.dct", "spectral.dct"])
@dispatch.add_dispatch_support
def dct(input, type=2, n=None, axis=-1, norm=None, name=None): # pylint: disable=redefined-builtin
"""Computes the 1D [Discrete Cosine Transform (DCT)][dct] of `input`.
Types I, II, III and IV are supported.
Type I is implemented using a length `2N` padded `tf.signal.rfft`.
Type II is implemented using a length `2N` padded `tf.signal.rfft`, as
described here: [Type 2 DCT using 2N FFT padded (Makhoul)]
(https://dsp.stackexchange.com/a/10606).
Type III is a fairly straightforward inverse of Type II
(i.e. using a length `2N` padded `tf.signal.irfft`).
Type IV is calculated through 2N length DCT2 of padded signal and
picking the odd indices.
@compatibility(scipy)
Equivalent to [scipy.fftpack.dct]
(https://docs.scipy.org/doc/scipy-1.4.0/reference/generated/scipy.fftpack.dct.html)
for Type-I, Type-II, Type-III and Type-IV DCT.
@end_compatibility
Args:
input: A `[..., samples]` `float32`/`float64` `Tensor` containing the
signals to take the DCT of.
type: The DCT type to perform. Must be 1, 2, 3 or 4.
n: The length of the transform. If length is less than sequence length,
only the first n elements of the sequence are considered for the DCT.
If n is greater than the sequence length, zeros are padded and then
the DCT is computed as usual.
axis: For future expansion. The axis to compute the DCT along. Must be `-1`.
norm: The normalization to apply. `None` for no normalization or `'ortho'`
for orthonormal normalization.
name: An optional name for the operation.
Returns:
A `[..., samples]` `float32`/`float64` `Tensor` containing the DCT of
`input`.
Raises:
ValueError: If `type` is not `1`, `2`, `3` or `4`, `axis` is
not `-1`, `n` is not `None` or greater than 0,
or `norm` is not `None` or `'ortho'`.
ValueError: If `type` is `1` and `norm` is `ortho`.
[dct]: https://en.wikipedia.org/wiki/Discrete_cosine_transform
"""
_validate_dct_arguments(input, type, n, axis, norm)
return _dct_internal(input, type, n, axis, norm, name)
def _dct_internal(input, type=2, n=None, axis=-1, norm=None, name=None): # pylint: disable=redefined-builtin
"""Computes the 1D Discrete Cosine Transform (DCT) of `input`.
This internal version of `dct` does not perform any validation and accepts a
dynamic value for `n` in the form of a rank 0 tensor.
Args:
input: A `[..., samples]` `float32`/`float64` `Tensor` containing the
signals to take the DCT of.
type: The DCT type to perform. Must be 1, 2, 3 or 4.
n: The length of the transform. If length is less than sequence length,
only the first n elements of the sequence are considered for the DCT.
If n is greater than the sequence length, zeros are padded and then
the DCT is computed as usual. Can be an int or rank 0 tensor.
axis: For future expansion. The axis to compute the DCT along. Must be `-1`.
norm: The normalization to apply. `None` for no normalization or `'ortho'`
for orthonormal normalization.
name: An optional name for the operation.
Returns:
A `[..., samples]` `float32`/`float64` `Tensor` containing the DCT of
`input`.
"""
with _ops.name_scope(name, "dct", [input]):
input = _ops.convert_to_tensor(input)
zero = _ops.convert_to_tensor(0.0, dtype=input.dtype)
seq_len = (
tensor_shape.dimension_value(input.shape[-1]) or
_array_ops.shape(input)[-1])
if n is not None:
def truncate_input():
return input[..., 0:n]
def pad_input():
rank = len(input.shape)
padding = [[0, 0] for _ in range(rank)]
padding[rank - 1][1] = n - seq_len
padding = _ops.convert_to_tensor(padding, dtype=_dtypes.int32)
return _array_ops.pad(input, paddings=padding)
input = smart_cond.smart_cond(n <= seq_len, truncate_input, pad_input)
axis_dim = (tensor_shape.dimension_value(input.shape[-1])
or _array_ops.shape(input)[-1])
axis_dim_float = _math_ops.cast(axis_dim, input.dtype)
if type == 1:
dct1_input = _array_ops.concat([input, input[..., -2:0:-1]], axis=-1)
dct1 = _math_ops.real(fft_ops.rfft(dct1_input))
return dct1
if type == 2:
scale = 2.0 * _math_ops.exp(
_math_ops.complex(
zero, -_math_ops.range(axis_dim_float) * _math.pi * 0.5 /
axis_dim_float))
# TODO(rjryan): Benchmark performance and memory usage of the various
# approaches to computing a DCT via the RFFT.
dct2 = _math_ops.real(
fft_ops.rfft(
input, fft_length=[2 * axis_dim])[..., :axis_dim] * scale)
if norm == "ortho":
n1 = 0.5 * _math_ops.rsqrt(axis_dim_float)
n2 = n1 * _math.sqrt(2.0)
# Use tf.pad to make a vector of [n1, n2, n2, n2, ...].
weights = _array_ops.pad(
_array_ops.expand_dims(n1, 0), [[0, axis_dim - 1]],
constant_values=n2)
dct2 *= weights
return dct2
elif type == 3:
if norm == "ortho":
n1 = _math_ops.sqrt(axis_dim_float)
n2 = n1 * _math.sqrt(0.5)
# Use tf.pad to make a vector of [n1, n2, n2, n2, ...].
weights = _array_ops.pad(
_array_ops.expand_dims(n1, 0), [[0, axis_dim - 1]],
constant_values=n2)
input *= weights
else:
input *= axis_dim_float
scale = 2.0 * _math_ops.exp(
_math_ops.complex(
zero,
_math_ops.range(axis_dim_float) * _math.pi * 0.5 /
axis_dim_float))
dct3 = _math_ops.real(
fft_ops.irfft(
scale * _math_ops.complex(input, zero),
fft_length=[2 * axis_dim]))[..., :axis_dim]
return dct3
elif type == 4:
# DCT-2 of 2N length zero-padded signal, unnormalized.
dct2 = _dct_internal(input, type=2, n=2*axis_dim, axis=axis, norm=None)
# Get odd indices of DCT-2 of zero padded 2N signal to obtain
# DCT-4 of the original N length signal.
dct4 = dct2[..., 1::2]
if norm == "ortho":
dct4 *= _math.sqrt(0.5) * _math_ops.rsqrt(axis_dim_float)
return dct4
# TODO(rjryan): Implement `n` and `axis` parameters.
@tf_export("signal.idct", v1=["signal.idct", "spectral.idct"])
@dispatch.add_dispatch_support
def idct(input, type=2, n=None, axis=-1, norm=None, name=None): # pylint: disable=redefined-builtin
"""Computes the 1D [Inverse Discrete Cosine Transform (DCT)][idct] of `input`.
Currently Types I, II, III, IV are supported. Type III is the inverse of
Type II, and vice versa.
Note that you must re-normalize by 1/(2n) to obtain an inverse if `norm` is
not `'ortho'`. That is:
`signal == idct(dct(signal)) * 0.5 / signal.shape[-1]`.
When `norm='ortho'`, we have:
`signal == idct(dct(signal, norm='ortho'), norm='ortho')`.
@compatibility(scipy)
Equivalent to [scipy.fftpack.idct]
(https://docs.scipy.org/doc/scipy-1.4.0/reference/generated/scipy.fftpack.idct.html)
for Type-I, Type-II, Type-III and Type-IV DCT.
@end_compatibility
Args:
input: A `[..., samples]` `float32`/`float64` `Tensor` containing the
signals to take the DCT of.
type: The IDCT type to perform. Must be 1, 2, 3 or 4.
n: For future expansion. The length of the transform. Must be `None`.
axis: For future expansion. The axis to compute the DCT along. Must be `-1`.
norm: The normalization to apply. `None` for no normalization or `'ortho'`
for orthonormal normalization.
name: An optional name for the operation.
Returns:
A `[..., samples]` `float32`/`float64` `Tensor` containing the IDCT of
`input`.
Raises:
ValueError: If `type` is not `1`, `2` or `3`, `n` is not `None, `axis` is
not `-1`, or `norm` is not `None` or `'ortho'`.
[idct]:
https://en.wikipedia.org/wiki/Discrete_cosine_transform#Inverse_transforms
"""
_validate_dct_arguments(input, type, n, axis, norm)
inverse_type = {1: 1, 2: 3, 3: 2, 4: 4}[type]
return _dct_internal(
input, type=inverse_type, n=n, axis=axis, norm=norm, name=name)