3RNN/Lib/site-packages/tensorflow/python/ops/signal/fft_ops.py
2024-05-26 19:49:15 +02:00

697 lines
26 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Fast-Fourier Transform ops."""
import re
import numpy as np
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import tensor_util as _tensor_util
from tensorflow.python.ops import array_ops as _array_ops
from tensorflow.python.ops import array_ops_stack as _array_ops_stack
from tensorflow.python.ops import gen_spectral_ops
from tensorflow.python.ops import manip_ops
from tensorflow.python.ops import math_ops as _math_ops
from tensorflow.python.util import dispatch
from tensorflow.python.util.tf_export import tf_export
def _infer_fft_length_for_fftn(input_tensor):
return _array_ops.shape(input_tensor)[-len(input_tensor.shape) :]
def _infer_fft_length_for_irfftn(input_tensor):
fft_shape = input_tensor.get_shape()[-len(input_tensor.shape) :]
fft_length = fft_shape.as_list()
fft_length[-1] = max(0, 2 * (fft_length[-1] - 1))
return _ops.convert_to_tensor(fft_length, _dtypes.int32)
def _infer_axes_for_fftn(input_tensor):
return _ops.convert_to_tensor(
np.arange(len(input_tensor.shape)), _dtypes.int32
)
def _process_empty_axes(input_tensor, axes):
if axes is None:
axes = _infer_axes_for_fftn(input_tensor)
else:
axes = _ops.convert_to_tensor(axes, _dtypes.int32)
return axes
def _infer_fft_length_for_rfft(input_tensor, fft_rank):
"""Infers the `fft_length` argument for a `rank` RFFT from `input_tensor`."""
# A TensorShape for the inner fft_rank dimensions.
fft_shape = input_tensor.get_shape()[-fft_rank:]
# If any dim is unknown, fall back to tensor-based math.
if not fft_shape.is_fully_defined():
return _array_ops.shape(input_tensor)[-fft_rank:]
# Otherwise, return a constant.
return _ops.convert_to_tensor(fft_shape.as_list(), _dtypes.int32)
def _infer_fft_length_for_irfft(input_tensor, fft_rank):
"""Infers the `fft_length` argument for a `rank` IRFFT from `input_tensor`."""
# A TensorShape for the inner fft_rank dimensions.
fft_shape = input_tensor.get_shape()[-fft_rank:]
# If any dim is unknown, fall back to tensor-based math.
if not fft_shape.is_fully_defined():
fft_length = _array_ops_stack.unstack(
_array_ops.shape(input_tensor)[-fft_rank:])
fft_length[-1] = _math_ops.maximum(0, 2 * (fft_length[-1] - 1))
return _array_ops_stack.stack(fft_length)
# Otherwise, return a constant.
fft_length = fft_shape.as_list()
if fft_length:
fft_length[-1] = max(0, 2 * (fft_length[-1] - 1))
return _ops.convert_to_tensor(fft_length, _dtypes.int32)
def _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length, is_reverse=False):
"""Pads `input_tensor` to `fft_length` on its inner-most `fft_rank` dims."""
fft_shape = _tensor_util.constant_value_as_shape(fft_length)
# Edge case: skip padding empty tensors.
if (input_tensor.shape.ndims is not None and
any(dim.value == 0 for dim in input_tensor.shape.dims)):
return input_tensor
# If we know the shapes ahead of time, we can either skip or pre-compute the
# appropriate paddings. Otherwise, fall back to computing paddings in
# TensorFlow.
if fft_shape.is_fully_defined() and input_tensor.shape.ndims is not None:
# Slice the last FFT-rank dimensions from input_tensor's shape.
input_fft_shape = input_tensor.shape[-fft_shape.ndims:] # pylint: disable=invalid-unary-operand-type
if input_fft_shape.is_fully_defined():
# In reverse, we only pad the inner-most dimension to fft_length / 2 + 1.
if is_reverse:
fft_shape = fft_shape[:-1].concatenate(
fft_shape.dims[-1].value // 2 + 1)
paddings = [[0, max(fft_dim.value - input_dim.value, 0)]
for fft_dim, input_dim in zip(
fft_shape.dims, input_fft_shape.dims)]
if any(pad > 0 for _, pad in paddings):
outer_paddings = [[0, 0]] * max((input_tensor.shape.ndims -
fft_shape.ndims), 0)
return _array_ops.pad(input_tensor, outer_paddings + paddings)
return input_tensor
# If we can't determine the paddings ahead of time, then we have to pad. If
# the paddings end up as zero, tf.pad has a special-case that does no work.
input_rank = _array_ops.rank(input_tensor)
input_fft_shape = _array_ops.shape(input_tensor)[-fft_rank:]
outer_dims = _math_ops.maximum(0, input_rank - fft_rank)
outer_paddings = _array_ops.zeros([outer_dims], fft_length.dtype)
# In reverse, we only pad the inner-most dimension to fft_length / 2 + 1.
if is_reverse:
fft_length = _array_ops.concat([fft_length[:-1],
fft_length[-1:] // 2 + 1], 0)
fft_paddings = _math_ops.maximum(0, fft_length - input_fft_shape)
paddings = _array_ops.concat([outer_paddings, fft_paddings], 0)
paddings = _array_ops_stack.stack(
[_array_ops.zeros_like(paddings), paddings], axis=1)
return _array_ops.pad(input_tensor, paddings)
def _rfft_wrapper(fft_fn, fft_rank, default_name):
"""Wrapper around gen_spectral_ops.rfft* that infers fft_length argument."""
def _rfft(input_tensor, fft_length=None, name=None):
"""Wrapper around gen_spectral_ops.rfft* that infers fft_length argument."""
with _ops.name_scope(name, default_name,
[input_tensor, fft_length]) as name:
input_tensor = _ops.convert_to_tensor(input_tensor,
preferred_dtype=_dtypes.float32)
if input_tensor.dtype not in (_dtypes.float32, _dtypes.float64):
raise ValueError(
"RFFT requires tf.float32 or tf.float64 inputs, got: %s" %
input_tensor)
real_dtype = input_tensor.dtype
if real_dtype == _dtypes.float32:
complex_dtype = _dtypes.complex64
else:
assert real_dtype == _dtypes.float64
complex_dtype = _dtypes.complex128
input_tensor.shape.with_rank_at_least(fft_rank)
if fft_length is None:
fft_length = _infer_fft_length_for_rfft(input_tensor, fft_rank)
else:
fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length)
fft_length_static = _tensor_util.constant_value(fft_length)
if fft_length_static is not None:
fft_length = fft_length_static
return fft_fn(input_tensor, fft_length, Tcomplex=complex_dtype, name=name)
_rfft.__doc__ = re.sub(" Tcomplex.*?\n", "", fft_fn.__doc__)
return _rfft
def _irfft_wrapper(ifft_fn, fft_rank, default_name):
"""Wrapper around gen_spectral_ops.irfft* that infers fft_length argument."""
def _irfft(input_tensor, fft_length=None, name=None):
"""Wrapper irfft* that infers fft_length argument."""
with _ops.name_scope(name, default_name,
[input_tensor, fft_length]) as name:
input_tensor = _ops.convert_to_tensor(input_tensor,
preferred_dtype=_dtypes.complex64)
input_tensor.shape.with_rank_at_least(fft_rank)
if input_tensor.dtype not in (_dtypes.complex64, _dtypes.complex128):
raise ValueError(
"IRFFT requires tf.complex64 or tf.complex128 inputs, got: %s" %
input_tensor)
complex_dtype = input_tensor.dtype
real_dtype = complex_dtype.real_dtype
if fft_length is None:
fft_length = _infer_fft_length_for_irfft(input_tensor, fft_rank)
else:
fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length,
is_reverse=True)
fft_length_static = _tensor_util.constant_value(fft_length)
if fft_length_static is not None:
fft_length = fft_length_static
return ifft_fn(input_tensor, fft_length, Treal=real_dtype, name=name)
_irfft.__doc__ = re.sub("`input`", "`input_tensor`",
re.sub(" Treal.*?\n", "", ifft_fn.__doc__))
return _irfft
def _fftn_wrapper(fft_n, default_name):
"""Wrapper around gen_spectral_ops.fftn."""
def _fftn(input_tensor, fft_length=None, axes=None, norm=None, name=None):
"""Wrapper around gen_spectral_ops.*fft that infers fft_length and axes arguments."""
with _ops.name_scope(
name, default_name, [input_tensor, fft_length, axes]
) as name:
axes = _process_empty_axes(input_tensor, axes)
fft_rank = axes.shape[0]
input_tensor = _ops.convert_to_tensor(
input_tensor, preferred_dtype=_dtypes.complex64
)
input_tensor.shape.with_rank_at_least(fft_rank)
if fft_length is None:
fft_length = _infer_fft_length_for_fftn(input_tensor)
else:
fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length)
fft_length_static = _tensor_util.constant_value(fft_length)
if fft_length_static is not None:
fft_length = fft_length_static
if norm is None:
norm = "backward"
n = 1
if norm != "backward":
for fft_length_i in fft_length:
n *= fft_length_i
if norm == "forward":
input_tensor /= n
elif norm == "ortho":
input_tensor /= np.sqrt(n) # should be sqrt(N)
return fft_n(input_tensor, fft_length, axes, name=name)
_fftn.__doc__ = re.sub(r" Tcomplex.*?\n", "", fft_n.__doc__)
return _fftn
def _ifftn_wrapper(ifft_n, default_name):
"""Wrapper around gen_spectral_ops.ifftn."""
def _ifftn(input_tensor, fft_length=None, axes=None, norm=None, name=None):
"""Wrapper around gen_spectral_ops.*fft that infers fft_length and axes arguments."""
with _ops.name_scope(
name, default_name, [input_tensor, fft_length, axes]
) as name:
axes = _process_empty_axes(input_tensor, axes)
fft_rank = axes.shape[0]
input_tensor = _ops.convert_to_tensor(
input_tensor, preferred_dtype=_dtypes.complex64
)
input_tensor.shape.with_rank_at_least(fft_rank)
if fft_length is None:
fft_length = _infer_fft_length_for_fftn(input_tensor)
else:
fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length)
fft_length_static = _tensor_util.constant_value(fft_length)
if fft_length_static is not None:
fft_length = fft_length_static
if norm is None:
norm = "backward"
n = 1
if norm != "backward":
for fft_length_i in fft_length:
n *= fft_length_i
if norm == "forward":
input_tensor *= n
elif norm == "ortho":
input_tensor *= np.sqrt(n) # should be sqrt(N)
return ifft_n(input_tensor, fft_length, axes, name=name)
_ifftn.__doc__ = re.sub(r" Tcomplex.*?\n", "", ifft_n.__doc__)
return _ifftn
def _rfftn_wrapper(rfft_n, default_name):
"""Wrapper around gen_spectral_ops.rfftn."""
def _rfftn(input_tensor, fft_length=None, axes=None, norm=None, name=None):
"""Wrapper around gen_spectral_ops.*fft that infers fft_length and axes arguments."""
with _ops.name_scope(
name, default_name, [input_tensor, fft_length, axes]
) as name:
axes = _process_empty_axes(input_tensor, axes)
fft_rank = axes.shape[0]
input_tensor = _ops.convert_to_tensor(
input_tensor, preferred_dtype=_dtypes.float32
)
if input_tensor.dtype not in (_dtypes.float32, _dtypes.float64):
raise ValueError(
"RFFT requires tf.float32 or tf.float64 inputs, got: %s"
% input_tensor
)
real_dtype = input_tensor.dtype
if real_dtype == _dtypes.float32:
complex_dtype = _dtypes.complex64
else:
assert real_dtype == _dtypes.float64
complex_dtype = _dtypes.complex128
input_tensor.shape.with_rank_at_least(fft_rank)
if fft_length is None:
fft_length = _infer_fft_length_for_fftn(input_tensor)
else:
fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length)
fft_length_static = _tensor_util.constant_value(fft_length)
if fft_length_static is not None:
fft_length = fft_length_static
if norm is None:
norm = "backward"
n = 1
if norm != "backward":
for fft_length_i in fft_length:
n *= fft_length_i
if norm == "forward":
input_tensor /= n
elif norm == "ortho":
input_tensor /= np.sqrt(n) # should be sqrt(N)
return rfft_n(
input_tensor,
fft_length,
axes,
Tcomplex=complex_dtype,
name=name,
)
_rfftn.__doc__ = re.sub(r" Tcomplex.*?\n", "", rfft_n.__doc__)
return _rfftn
def _irfftn_wrapper(irfft_n, default_name):
"""Wrapper around gen_spectral_ops.irfftn."""
def _irfftn(input_tensor, fft_length=None, axes=None, norm=None, name=None):
"""Wrapper irfft* that infers fft_length argument."""
with _ops.name_scope(
name, default_name, [input_tensor, fft_length]
) as name:
axes = _process_empty_axes(input_tensor, axes)
fft_rank = axes.shape[0]
input_tensor = _ops.convert_to_tensor(
input_tensor, preferred_dtype=_dtypes.complex64
)
input_tensor.shape.with_rank_at_least(fft_rank)
if input_tensor.dtype not in (_dtypes.complex64, _dtypes.complex128):
raise ValueError(
"IRFFT requires tf.complex64 or tf.complex128 inputs, got: %s"
% input_tensor
)
complex_dtype = input_tensor.dtype
real_dtype = complex_dtype.real_dtype
if fft_length is None:
fft_length = _infer_fft_length_for_irfftn(input_tensor)
else:
fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
input_tensor = _maybe_pad_for_rfft(
input_tensor, fft_rank, fft_length, is_reverse=True
)
fft_length_static = _tensor_util.constant_value(fft_length)
if fft_length_static is not None:
fft_length = fft_length_static
if norm is None:
norm = "backward"
n = 1
if norm != "backward":
for fft_length_i in fft_length:
n *= fft_length_i
if norm == "forward":
input_tensor *= n
elif norm == "ortho":
input_tensor *= np.sqrt(n) # should be sqrt(N)
return irfft_n(
input_tensor, fft_length, axes, Treal=real_dtype, name=name
)
_irfftn.__doc__ = re.sub(
"`input`",
"`input_tensor`",
re.sub(r" Treal.*?\n", "", irfft_n.__doc__),
)
return _irfftn
# FFT/IFFT 1/2/3D are exported via
# third_party/tensorflow/core/api_def/python_api/
fft = gen_spectral_ops.fft
ifft = gen_spectral_ops.ifft
fft2d = gen_spectral_ops.fft2d
ifft2d = gen_spectral_ops.ifft2d
fft3d = gen_spectral_ops.fft3d
ifft3d = gen_spectral_ops.ifft3d
fftnd = _fftn_wrapper(gen_spectral_ops.fftnd, "fftnd")
tf_export("signal.fftnd")(
dispatch.add_dispatch_support(fftnd)
)
ifftnd = _ifftn_wrapper(gen_spectral_ops.ifftnd, "ifftnd")
tf_export("signal.ifftnd")(
dispatch.add_dispatch_support(ifftnd)
)
rfft = _rfft_wrapper(gen_spectral_ops.rfft, 1, "rfft")
tf_export("signal.rfft", v1=["signal.rfft", "spectral.rfft"])(
dispatch.add_dispatch_support(rfft))
irfft = _irfft_wrapper(gen_spectral_ops.irfft, 1, "irfft")
tf_export("signal.irfft", v1=["signal.irfft", "spectral.irfft"])(
dispatch.add_dispatch_support(irfft))
rfft2d = _rfft_wrapper(gen_spectral_ops.rfft2d, 2, "rfft2d")
tf_export("signal.rfft2d", v1=["signal.rfft2d", "spectral.rfft2d"])(
dispatch.add_dispatch_support(rfft2d))
irfft2d = _irfft_wrapper(gen_spectral_ops.irfft2d, 2, "irfft2d")
tf_export("signal.irfft2d", v1=["signal.irfft2d", "spectral.irfft2d"])(
dispatch.add_dispatch_support(irfft2d))
rfft3d = _rfft_wrapper(gen_spectral_ops.rfft3d, 3, "rfft3d")
tf_export("signal.rfft3d", v1=["signal.rfft3d", "spectral.rfft3d"])(
dispatch.add_dispatch_support(rfft3d))
irfft3d = _irfft_wrapper(gen_spectral_ops.irfft3d, 3, "irfft3d")
tf_export("signal.irfft3d", v1=["signal.irfft3d", "spectral.irfft3d"])(
dispatch.add_dispatch_support(irfft3d))
rfftnd = _rfftn_wrapper(gen_spectral_ops.rfftnd, "rfftnd")
tf_export("signal.rfftnd")(
dispatch.add_dispatch_support(rfftnd)
)
irfftnd = _irfftn_wrapper(gen_spectral_ops.irfftnd, "irfftnd")
tf_export("signal.irfftnd")(
dispatch.add_dispatch_support(irfftnd)
)
def _fft_size_for_grad(grad, rank):
return _math_ops.reduce_prod(_array_ops.shape(grad)[-rank:])
@_ops.RegisterGradient("FFT")
def _fft_grad(_, grad):
size = _math_ops.cast(_fft_size_for_grad(grad, 1), grad.dtype)
return ifft(grad) * size
@_ops.RegisterGradient("IFFT")
def _ifft_grad(_, grad):
rsize = _math_ops.cast(
1. / _math_ops.cast(_fft_size_for_grad(grad, 1), grad.dtype.real_dtype),
grad.dtype)
return fft(grad) * rsize
@_ops.RegisterGradient("FFT2D")
def _fft2d_grad(_, grad):
size = _math_ops.cast(_fft_size_for_grad(grad, 2), grad.dtype)
return ifft2d(grad) * size
@_ops.RegisterGradient("IFFT2D")
def _ifft2d_grad(_, grad):
rsize = _math_ops.cast(
1. / _math_ops.cast(_fft_size_for_grad(grad, 2), grad.dtype.real_dtype),
grad.dtype)
return fft2d(grad) * rsize
@_ops.RegisterGradient("FFT3D")
def _fft3d_grad(_, grad):
size = _math_ops.cast(_fft_size_for_grad(grad, 3), grad.dtype)
return ifft3d(grad) * size
@_ops.RegisterGradient("IFFT3D")
def _ifft3d_grad(_, grad):
rsize = _math_ops.cast(
1. / _math_ops.cast(_fft_size_for_grad(grad, 3), grad.dtype.real_dtype),
grad.dtype)
return fft3d(grad) * rsize
def _rfft_grad_helper(rank, irfft_fn):
"""Returns a gradient function for an RFFT of the provided rank."""
# Can't happen because we don't register a gradient for RFFT3D.
assert rank in (1, 2), "Gradient for RFFT3D is not implemented."
def _grad(op, grad):
"""A gradient function for RFFT with the provided `rank` and `irfft_fn`."""
fft_length = op.inputs[1]
complex_dtype = grad.dtype
real_dtype = complex_dtype.real_dtype
input_shape = _array_ops.shape(op.inputs[0])
is_even = _math_ops.cast(1 - (fft_length[-1] % 2), complex_dtype)
def _tile_for_broadcasting(matrix, t):
expanded = _array_ops.reshape(
matrix,
_array_ops.concat([
_array_ops.ones([_array_ops.rank(t) - 2], _dtypes.int32),
_array_ops.shape(matrix)
], 0))
return _array_ops.tile(
expanded, _array_ops.concat([_array_ops.shape(t)[:-2], [1, 1]], 0))
def _mask_matrix(length):
"""Computes t_n = exp(sqrt(-1) * pi * n^2 / line_len)."""
# TODO(rjryan): Speed up computation of twiddle factors using the
# following recurrence relation and cache them across invocations of RFFT.
#
# t_n = exp(sqrt(-1) * pi * n^2 / line_len)
# for n = 0, 1,..., line_len-1.
# For n > 2, use t_n = t_{n-1}^2 / t_{n-2} * t_1^2
a = _array_ops.tile(
_array_ops.expand_dims(_math_ops.range(length), 0), (length, 1))
b = _array_ops.transpose(a, [1, 0])
return _math_ops.exp(
-2j * np.pi * _math_ops.cast(a * b, complex_dtype) /
_math_ops.cast(length, complex_dtype))
def _ymask(length):
"""A sequence of [1+0j, -1+0j, 1+0j, -1+0j, ...] with length `length`."""
return _math_ops.cast(1 - 2 * (_math_ops.range(length) % 2),
complex_dtype)
y0 = grad[..., 0:1]
if rank == 1:
ym = grad[..., -1:]
extra_terms = y0 + is_even * ym * _ymask(input_shape[-1])
elif rank == 2:
# Create a mask matrix for y0 and ym.
base_mask = _mask_matrix(input_shape[-2])
# Tile base_mask to match y0 in shape so that we can batch-matmul the
# inner 2 dimensions.
tiled_mask = _tile_for_broadcasting(base_mask, y0)
y0_term = _math_ops.matmul(tiled_mask, _math_ops.conj(y0))
extra_terms = y0_term
ym = grad[..., -1:]
ym_term = _math_ops.matmul(tiled_mask, _math_ops.conj(ym))
inner_dim = input_shape[-1]
ym_term = _array_ops.tile(
ym_term,
_array_ops.concat([
_array_ops.ones([_array_ops.rank(grad) - 1], _dtypes.int32),
[inner_dim]
], 0)) * _ymask(inner_dim)
extra_terms += is_even * ym_term
# The gradient of RFFT is the IRFFT of the incoming gradient times a scaling
# factor, plus some additional terms to make up for the components dropped
# due to Hermitian symmetry.
input_size = _math_ops.cast(
_fft_size_for_grad(op.inputs[0], rank), real_dtype)
the_irfft = irfft_fn(grad, fft_length)
return 0.5 * (the_irfft * input_size + _math_ops.real(extra_terms)), None
return _grad
def _irfft_grad_helper(rank, rfft_fn):
"""Returns a gradient function for an IRFFT of the provided rank."""
# Can't happen because we don't register a gradient for IRFFT3D.
assert rank in (1, 2), "Gradient for IRFFT3D is not implemented."
def _grad(op, grad):
"""A gradient function for IRFFT with the provided `rank` and `rfft_fn`."""
# Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs
# and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the
# graph we special-case the situation where the FFT length and last
# dimension of the input are known at graph construction time.
fft_length = op.inputs[1]
fft_length_static = _tensor_util.constant_value(fft_length)
if fft_length_static is not None:
fft_length = fft_length_static
real_dtype = grad.dtype
if real_dtype == _dtypes.float32:
complex_dtype = _dtypes.complex64
elif real_dtype == _dtypes.float64:
complex_dtype = _dtypes.complex128
is_odd = _math_ops.mod(fft_length[-1], 2)
input_last_dimension = _array_ops.shape(op.inputs[0])[-1]
mask = _array_ops.concat(
[[1.0], 2.0 * _array_ops.ones(
[input_last_dimension - 2 + is_odd], real_dtype),
_array_ops.ones([1 - is_odd], real_dtype)], 0)
rsize = _math_ops.reciprocal(_math_ops.cast(
_fft_size_for_grad(grad, rank), real_dtype))
# The gradient of IRFFT is the RFFT of the incoming gradient times a scaling
# factor and a mask. The mask scales the gradient for the Hermitian
# symmetric components of the RFFT by a factor of two, since these
# components are de-duplicated in the RFFT.
the_rfft = rfft_fn(grad, fft_length)
return the_rfft * _math_ops.cast(rsize * mask, complex_dtype), None
return _grad
@tf_export("signal.fftshift")
@dispatch.add_dispatch_support
def fftshift(x, axes=None, name=None):
"""Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
@compatibility(numpy)
Equivalent to numpy.fft.fftshift.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftshift.html
@end_compatibility
For example:
```python
x = tf.signal.fftshift([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
x.numpy() # array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
```
Args:
x: `Tensor`, input tensor.
axes: `int` or shape `tuple`, optional Axes over which to shift. Default is
None, which shifts all axes.
name: An optional name for the operation.
Returns:
A `Tensor`, The shifted tensor.
"""
with _ops.name_scope(name, "fftshift") as name:
x = _ops.convert_to_tensor(x)
if axes is None:
axes = tuple(range(x.shape.ndims))
shift = _array_ops.shape(x) // 2
elif isinstance(axes, int):
shift = _array_ops.shape(x)[axes] // 2
else:
rank = _array_ops.rank(x)
# allows negative axis
axes = _array_ops.where(_math_ops.less(axes, 0), axes + rank, axes)
shift = _array_ops.gather(_array_ops.shape(x), axes) // 2
return manip_ops.roll(x, shift, axes, name)
@tf_export("signal.ifftshift")
@dispatch.add_dispatch_support
def ifftshift(x, axes=None, name=None):
"""The inverse of fftshift.
Although identical for even-length x,
the functions differ by one sample for odd-length x.
@compatibility(numpy)
Equivalent to numpy.fft.ifftshift.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifftshift.html
@end_compatibility
For example:
```python
x = tf.signal.ifftshift([[ 0., 1., 2.],[ 3., 4., -4.],[-3., -2., -1.]])
x.numpy() # array([[ 4., -4., 3.],[-2., -1., -3.],[ 1., 2., 0.]])
```
Args:
x: `Tensor`, input tensor.
axes: `int` or shape `tuple` Axes over which to calculate. Defaults to None,
which shifts all axes.
name: An optional name for the operation.
Returns:
A `Tensor`, The shifted tensor.
"""
with _ops.name_scope(name, "ifftshift") as name:
x = _ops.convert_to_tensor(x)
if axes is None:
axes = tuple(range(x.shape.ndims))
shift = -(_array_ops.shape(x) // 2)
elif isinstance(axes, int):
shift = -(_array_ops.shape(x)[axes] // 2)
else:
rank = _array_ops.rank(x)
# allows negative axis
axes = _array_ops.where(_math_ops.less(axes, 0), axes + rank, axes)
shift = -(_array_ops.gather(_array_ops.shape(x), axes) // 2)
return manip_ops.roll(x, shift, axes, name)
_ops.RegisterGradient("RFFT")(_rfft_grad_helper(1, irfft))
_ops.RegisterGradient("IRFFT")(_irfft_grad_helper(1, rfft))
_ops.RegisterGradient("RFFT2D")(_rfft_grad_helper(2, irfft2d))
_ops.RegisterGradient("IRFFT2D")(_irfft_grad_helper(2, rfft2d))