70 lines
2.5 KiB
Python
70 lines
2.5 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Utility ops shared across tf.contrib.signal."""
|
|
|
|
import fractions # gcd is here for Python versions < 3
|
|
import math # Get gcd here for Python versions >= 3
|
|
import sys
|
|
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import tensor_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import while_loop
|
|
|
|
|
|
def gcd(a, b, name=None):
|
|
"""Returns the greatest common divisor via Euclid's algorithm.
|
|
|
|
Args:
|
|
a: The dividend. A scalar integer `Tensor`.
|
|
b: The divisor. A scalar integer `Tensor`.
|
|
name: An optional name for the operation.
|
|
|
|
Returns:
|
|
A scalar `Tensor` representing the greatest common divisor between `a` and
|
|
`b`.
|
|
|
|
Raises:
|
|
ValueError: If `a` or `b` are not scalar integers.
|
|
"""
|
|
with ops.name_scope(name, 'gcd', [a, b]):
|
|
a = ops.convert_to_tensor(a)
|
|
b = ops.convert_to_tensor(b)
|
|
|
|
a.shape.assert_has_rank(0)
|
|
b.shape.assert_has_rank(0)
|
|
|
|
if not a.dtype.is_integer:
|
|
raise ValueError('a must be an integer type. Got: %s' % a.dtype)
|
|
if not b.dtype.is_integer:
|
|
raise ValueError('b must be an integer type. Got: %s' % b.dtype)
|
|
|
|
# TPU requires static shape inference. GCD is used for subframe size
|
|
# computation, so we should prefer static computation where possible.
|
|
const_a = tensor_util.constant_value(a)
|
|
const_b = tensor_util.constant_value(b)
|
|
if const_a is not None and const_b is not None:
|
|
if sys.version_info.major < 3:
|
|
math_gcd = fractions.gcd
|
|
else:
|
|
math_gcd = math.gcd
|
|
return ops.convert_to_tensor(math_gcd(const_a, const_b))
|
|
|
|
cond = lambda _, b: math_ops.greater(b, array_ops.zeros_like(b))
|
|
body = lambda a, b: [b, math_ops.mod(a, b)]
|
|
a, b = while_loop.while_loop(cond, body, [a, b], back_prop=False)
|
|
return a
|