3RNN/Lib/site-packages/tensorflow/python/training/evaluation.py
2024-05-26 19:49:15 +02:00

274 lines
11 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains functions for evaluation and summarization of metrics."""
import math
import time
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import basic_session_run_hooks
from tensorflow.python.training import monitored_session
from tensorflow.python.training import session_run_hook
def _get_or_create_eval_step():
"""Gets or creates the eval step `Tensor`.
Returns:
A `Tensor` representing a counter for the evaluation step.
Raises:
ValueError: If multiple `Tensors` have been added to the
`tf.GraphKeys.EVAL_STEP` collection.
"""
graph = ops.get_default_graph()
eval_steps = graph.get_collection(ops.GraphKeys.EVAL_STEP)
if len(eval_steps) == 1:
return eval_steps[0]
elif len(eval_steps) > 1:
raise ValueError('Multiple tensors added to tf.GraphKeys.EVAL_STEP')
else:
counter = variable_scope.get_variable(
'eval_step',
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.EVAL_STEP])
return counter
def _get_latest_eval_step_value(update_ops):
"""Gets the eval step `Tensor` value after running `update_ops`.
Args:
update_ops: A list of `Tensors` or a dictionary of names to `Tensors`, which
are run before reading the eval step value.
Returns:
A `Tensor` representing the value for the evaluation step.
"""
if isinstance(update_ops, dict):
update_ops = list(update_ops.values())
with ops.control_dependencies(update_ops):
return array_ops.identity(_get_or_create_eval_step().read_value())
class _MultiStepStopAfterNEvalsHook(session_run_hook.SessionRunHook):
"""Run hook used by the evaluation routines to run the `eval_ops` N times."""
def __init__(self, num_evals, steps_per_run=1):
"""Constructs the run hook.
Args:
num_evals: The number of evaluations to run for. if set to None, will
iterate the dataset until all inputs are exhausted.
steps_per_run: Number of steps executed per run call.
"""
self._num_evals = num_evals
self._evals_completed = None
self._steps_per_run_initial_value = steps_per_run
def _set_evals_completed_tensor(self, updated_eval_step):
self._evals_completed = updated_eval_step
def begin(self):
self._steps_per_run_variable = \
basic_session_run_hooks.get_or_create_steps_per_run_variable()
def after_create_session(self, session, coord):
# Update number of steps to run in the first run call
if self._num_evals is None:
steps = self._steps_per_run_initial_value
else:
steps = min(self._steps_per_run_initial_value, self._num_evals)
self._steps_per_run_variable.load(steps, session=session)
def before_run(self, run_context):
return session_run_hook.SessionRunArgs(
{'evals_completed': self._evals_completed})
def after_run(self, run_context, run_values):
evals_completed = run_values.results['evals_completed']
# Update number of steps to run in the next iteration
if self._num_evals is None:
steps = self._steps_per_run_initial_value
else:
steps = min(self._num_evals - evals_completed,
self._steps_per_run_initial_value)
self._steps_per_run_variable.load(steps, session=run_context.session)
if self._num_evals is None:
logging.info('Evaluation [%d]', evals_completed)
else:
logging.info('Evaluation [%d/%d]', evals_completed, self._num_evals)
if self._num_evals is not None and evals_completed >= self._num_evals:
run_context.request_stop()
class _StopAfterNEvalsHook(session_run_hook.SessionRunHook):
"""Run hook used by the evaluation routines to run the `eval_ops` N times."""
def __init__(self, num_evals, log_progress=True):
"""Constructs the run hook.
Args:
num_evals: The number of evaluations to run for. if set to None, will
iterate the dataset until all inputs are exhausted.
log_progress: Whether to log evaluation progress, defaults to True.
"""
# The number of evals to run for.
self._num_evals = num_evals
self._evals_completed = None
self._log_progress = log_progress
# Reduce logging frequency if there are 20 or more evaluations.
self._log_frequency = (1 if (num_evals is None or num_evals < 20) else
math.floor(num_evals / 10.))
def _set_evals_completed_tensor(self, updated_eval_step):
self._evals_completed = updated_eval_step
def before_run(self, run_context):
return session_run_hook.SessionRunArgs(
{'evals_completed': self._evals_completed})
def after_run(self, run_context, run_values):
evals_completed = run_values.results['evals_completed']
if self._log_progress:
if self._num_evals is None:
logging.info('Evaluation [%d]', evals_completed)
else:
if ((evals_completed % self._log_frequency) == 0 or
(self._num_evals == evals_completed)):
logging.info('Evaluation [%d/%d]', evals_completed, self._num_evals)
if self._num_evals is not None and evals_completed >= self._num_evals:
run_context.request_stop()
def _evaluate_once(checkpoint_path,
master='',
scaffold=None,
eval_ops=None,
feed_dict=None,
final_ops=None,
final_ops_feed_dict=None,
hooks=None,
config=None):
"""Evaluates the model at the given checkpoint path.
During a single evaluation, the `eval_ops` is run until the session is
interrupted or requested to finish. This is typically requested via a
`tf.contrib.training.StopAfterNEvalsHook` which results in `eval_ops` running
the requested number of times.
Optionally, a user can pass in `final_ops`, a single `Tensor`, a list of
`Tensors` or a dictionary from names to `Tensors`. The `final_ops` is
evaluated a single time after `eval_ops` has finished running and the fetched
values of `final_ops` are returned. If `final_ops` is left as `None`, then
`None` is returned.
One may also consider using a `tf.contrib.training.SummaryAtEndHook` to record
summaries after the `eval_ops` have run. If `eval_ops` is `None`, the
summaries run immediately after the model checkpoint has been restored.
Note that `evaluate_once` creates a local variable used to track the number of
evaluations run via `tf.contrib.training.get_or_create_eval_step`.
Consequently, if a custom local init op is provided via a `scaffold`, the
caller should ensure that the local init op also initializes the eval step.
Args:
checkpoint_path: The path to a checkpoint to use for evaluation.
master: The BNS address of the TensorFlow master.
scaffold: An tf.compat.v1.train.Scaffold instance for initializing variables
and restoring variables. Note that `scaffold.init_fn` is used by the
function to restore the checkpoint. If you supply a custom init_fn, then
it must also take care of restoring the model from its checkpoint.
eval_ops: A single `Tensor`, a list of `Tensors` or a dictionary of names to
`Tensors`, which is run until the session is requested to stop, commonly
done by a `tf.contrib.training.StopAfterNEvalsHook`.
feed_dict: The feed dictionary to use when executing the `eval_ops`.
final_ops: A single `Tensor`, a list of `Tensors` or a dictionary of names
to `Tensors`.
final_ops_feed_dict: A feed dictionary to use when evaluating `final_ops`.
hooks: List of `tf.estimator.SessionRunHook` callbacks which are run inside
the evaluation loop.
config: An instance of `tf.compat.v1.ConfigProto` that will be used to
configure the `Session`. If left as `None`, the default will be used.
Returns:
The fetched values of `final_ops` or `None` if `final_ops` is `None`.
"""
eval_step = _get_or_create_eval_step()
# Prepare the run hooks.
hooks = list(hooks or [])
if eval_ops is not None:
if any(isinstance(h, _MultiStepStopAfterNEvalsHook) for h in hooks):
steps_per_run_variable = \
basic_session_run_hooks.get_or_create_steps_per_run_variable()
update_eval_step = state_ops.assign_add(
eval_step,
math_ops.cast(steps_per_run_variable, dtype=eval_step.dtype),
use_locking=True)
else:
update_eval_step = state_ops.assign_add(eval_step, 1, use_locking=True)
if isinstance(eval_ops, dict):
eval_ops['update_eval_step'] = update_eval_step
elif isinstance(eval_ops, (tuple, list)):
eval_ops = list(eval_ops) + [update_eval_step]
else:
eval_ops = [eval_ops, update_eval_step]
eval_step_value = _get_latest_eval_step_value(eval_ops)
for h in hooks:
if isinstance(h, (_StopAfterNEvalsHook, _MultiStepStopAfterNEvalsHook)):
h._set_evals_completed_tensor(eval_step_value) # pylint: disable=protected-access
logging.info('Starting evaluation at ' +
time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime()))
start = time.time()
# Prepare the session creator.
session_creator = monitored_session.ChiefSessionCreator(
scaffold=scaffold,
checkpoint_filename_with_path=checkpoint_path,
master=master,
config=config)
final_ops_hook = basic_session_run_hooks.FinalOpsHook(final_ops,
final_ops_feed_dict)
hooks.append(final_ops_hook)
with monitored_session.MonitoredSession(
session_creator=session_creator, hooks=hooks) as session:
if eval_ops is not None:
while not session.should_stop():
session.run(eval_ops, feed_dict)
logging.info('Inference Time : {:0.5f}s'.format(time.time() - start))
logging.info('Finished evaluation at ' +
time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime()))
return final_ops_hook.final_ops_values