292 lines
13 KiB
Python
292 lines
13 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Ftrl-proximal for TensorFlow."""
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gen_training_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.training import optimizer
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
|
|
@tf_export(v1=["train.FtrlOptimizer"])
|
|
class FtrlOptimizer(optimizer.Optimizer):
|
|
"""Optimizer that implements the FTRL algorithm.
|
|
|
|
This version has support for both online L2 (McMahan et al., 2013) and
|
|
shrinkage-type L2, which is the addition of an L2 penalty
|
|
to the loss function.
|
|
|
|
References:
|
|
Ad-click prediction:
|
|
[McMahan et al., 2013](https://dl.acm.org/citation.cfm?id=2488200)
|
|
([pdf](https://dl.acm.org/ft_gateway.cfm?id=2488200&ftid=1388399&dwn=1&CFID=32233078&CFTOKEN=d60fe57a294c056a-CB75C374-F915-E7A6-1573FBBC7BF7D526))
|
|
"""
|
|
|
|
def __init__(self,
|
|
learning_rate,
|
|
learning_rate_power=-0.5,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.0,
|
|
l2_regularization_strength=0.0,
|
|
use_locking=False,
|
|
name="Ftrl",
|
|
accum_name=None,
|
|
linear_name=None,
|
|
l2_shrinkage_regularization_strength=0.0,
|
|
beta=None):
|
|
r"""Construct a new FTRL optimizer.
|
|
|
|
Args:
|
|
learning_rate: A float value or a constant float `Tensor`.
|
|
learning_rate_power: A float value, must be less or equal to zero.
|
|
Controls how the learning rate decreases during training. Use zero for
|
|
a fixed learning rate. See section 3.1 in (McMahan et al., 2013).
|
|
initial_accumulator_value: The starting value for accumulators.
|
|
Only zero or positive values are allowed.
|
|
l1_regularization_strength: A float value, must be greater than or
|
|
equal to zero.
|
|
l2_regularization_strength: A float value, must be greater than or
|
|
equal to zero.
|
|
use_locking: If `True` use locks for update operations.
|
|
name: Optional name prefix for the operations created when applying
|
|
gradients. Defaults to "Ftrl".
|
|
accum_name: The suffix for the variable that keeps the gradient squared
|
|
accumulator. If not present, defaults to name.
|
|
linear_name: The suffix for the variable that keeps the linear gradient
|
|
accumulator. If not present, defaults to name + "_1".
|
|
l2_shrinkage_regularization_strength: A float value, must be greater than
|
|
or equal to zero. This differs from L2 above in that the L2 above is a
|
|
stabilization penalty, whereas this L2 shrinkage is a magnitude penalty.
|
|
The FTRL formulation can be written as:
|
|
w_{t+1} = argmin_w(\hat{g}_{1:t}w + L1*||w||_1 + L2*||w||_2^2), where
|
|
\hat{g} = g + (2*L2_shrinkage*w), and g is the gradient of the loss
|
|
function w.r.t. the weights w.
|
|
Specifically, in the absence of L1 regularization, it is equivalent to
|
|
the following update rule:
|
|
w_{t+1} = w_t - lr_t / (beta + 2*L2*lr_t) * g_t -
|
|
2*L2_shrinkage*lr_t / (beta + 2*L2*lr_t) * w_t
|
|
where lr_t is the learning rate at t.
|
|
When input is sparse shrinkage will only happen on the active weights.
|
|
beta: A float value; corresponds to the beta parameter in the paper.
|
|
|
|
Raises:
|
|
ValueError: If one of the arguments is invalid.
|
|
|
|
References:
|
|
Ad-click prediction:
|
|
[McMahan et al., 2013](https://dl.acm.org/citation.cfm?id=2488200)
|
|
([pdf](https://dl.acm.org/ft_gateway.cfm?id=2488200&ftid=1388399&dwn=1&CFID=32233078&CFTOKEN=d60fe57a294c056a-CB75C374-F915-E7A6-1573FBBC7BF7D526))
|
|
"""
|
|
super(FtrlOptimizer, self).__init__(use_locking, name)
|
|
|
|
if initial_accumulator_value < 0.0:
|
|
raise ValueError(
|
|
"initial_accumulator_value %f needs to be positive or zero" %
|
|
initial_accumulator_value)
|
|
if learning_rate_power > 0.0:
|
|
raise ValueError("learning_rate_power %f needs to be negative or zero" %
|
|
learning_rate_power)
|
|
if l1_regularization_strength < 0.0:
|
|
raise ValueError(
|
|
"l1_regularization_strength %f needs to be positive or zero" %
|
|
l1_regularization_strength)
|
|
if l2_regularization_strength < 0.0:
|
|
raise ValueError(
|
|
"l2_regularization_strength %f needs to be positive or zero" %
|
|
l2_regularization_strength)
|
|
if l2_shrinkage_regularization_strength < 0.0:
|
|
raise ValueError(
|
|
"l2_shrinkage_regularization_strength %f needs to be positive"
|
|
" or zero" % l2_shrinkage_regularization_strength)
|
|
|
|
self._learning_rate = learning_rate
|
|
self._learning_rate_power = learning_rate_power
|
|
self._initial_accumulator_value = initial_accumulator_value
|
|
self._l1_regularization_strength = l1_regularization_strength
|
|
self._l2_regularization_strength = l2_regularization_strength
|
|
self._beta = (0.0 if beta is None else beta)
|
|
self._l2_shrinkage_regularization_strength = (
|
|
l2_shrinkage_regularization_strength)
|
|
self._learning_rate_tensor = None
|
|
self._learning_rate_power_tensor = None
|
|
self._l1_regularization_strength_tensor = None
|
|
self._adjusted_l2_regularization_strength_tensor = None
|
|
self._l2_shrinkage_regularization_strength_tensor = None
|
|
self._accum_name = accum_name
|
|
self._linear_name = linear_name
|
|
|
|
def _create_slots(self, var_list):
|
|
# Create the "accum" and "linear" slots.
|
|
def _accum_initializer(shape, dtype=dtypes.float32, partition_info=None):
|
|
del partition_info
|
|
return array_ops.ones(
|
|
shape=shape, dtype=dtype) * self._initial_accumulator_value
|
|
for v in var_list:
|
|
self._get_or_make_slot_with_initializer(
|
|
v, _accum_initializer, v.shape, v.dtype, "accum",
|
|
self._accum_name or self._name)
|
|
self._zeros_slot(v, "linear", self._linear_name or self._name)
|
|
|
|
def _prepare(self):
|
|
self._learning_rate_tensor = ops.convert_to_tensor(
|
|
self._learning_rate, name="learning_rate")
|
|
self._l1_regularization_strength_tensor = ops.convert_to_tensor(
|
|
self._l1_regularization_strength, name="l1_regularization_strength")
|
|
# L2 regularization strength with beta added in so that the underlying
|
|
# TensorFlow ops do not need to include that parameter.
|
|
self._adjusted_l2_regularization_strength_tensor = ops.convert_to_tensor(
|
|
self._l2_regularization_strength + self._beta /
|
|
(2. * math_ops.maximum(self._learning_rate, 1e-36)),
|
|
name="adjusted_l2_regularization_strength")
|
|
assert self._adjusted_l2_regularization_strength_tensor is not None
|
|
self._beta_tensor = ops.convert_to_tensor(self._beta, name="beta")
|
|
self._l2_shrinkage_regularization_strength_tensor = ops.convert_to_tensor(
|
|
self._l2_shrinkage_regularization_strength,
|
|
name="l2_shrinkage_regularization_strength")
|
|
self._learning_rate_power_tensor = ops.convert_to_tensor(
|
|
self._learning_rate_power, name="learning_rate_power")
|
|
|
|
def _apply_dense(self, grad, var):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
if self._l2_shrinkage_regularization_strength <= 0.0:
|
|
return gen_training_ops.apply_ftrl(
|
|
var,
|
|
accum,
|
|
linear,
|
|
grad,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
else:
|
|
return gen_training_ops.apply_ftrl_v2(
|
|
var,
|
|
accum,
|
|
linear,
|
|
grad,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
|
|
def _resource_apply_dense(self, grad, var):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
if self._l2_shrinkage_regularization_strength <= 0.0:
|
|
return gen_training_ops.resource_apply_ftrl(
|
|
var.handle,
|
|
accum.handle,
|
|
linear.handle,
|
|
grad,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
else:
|
|
return gen_training_ops.resource_apply_ftrl_v2(
|
|
var.handle,
|
|
accum.handle,
|
|
linear.handle,
|
|
grad,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
|
|
def _apply_sparse(self, grad, var):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
if self._l2_shrinkage_regularization_strength <= 0.0:
|
|
return gen_training_ops.sparse_apply_ftrl(
|
|
var,
|
|
accum,
|
|
linear,
|
|
grad.values,
|
|
grad.indices,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
else:
|
|
return gen_training_ops.sparse_apply_ftrl_v2(
|
|
var,
|
|
accum,
|
|
linear,
|
|
grad.values,
|
|
grad.indices,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
|
|
grad.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
|
|
def _resource_apply_sparse(self, grad, var, indices):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
if self._l2_shrinkage_regularization_strength <= 0.0:
|
|
return gen_training_ops.resource_sparse_apply_ftrl(
|
|
var.handle,
|
|
accum.handle,
|
|
linear.handle,
|
|
grad,
|
|
indices,
|
|
math_ops.cast(self._learning_rate_tensor, grad.dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
grad.dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, grad.dtype),
|
|
use_locking=self._use_locking)
|
|
else:
|
|
return gen_training_ops.resource_sparse_apply_ftrl_v2(
|
|
var.handle,
|
|
accum.handle,
|
|
linear.handle,
|
|
grad,
|
|
indices,
|
|
math_ops.cast(self._learning_rate_tensor, grad.dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
|
|
math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
|
|
grad.dtype),
|
|
math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
|
|
grad.dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, grad.dtype),
|
|
use_locking=self._use_locking)
|