204 lines
7.6 KiB
Python
204 lines
7.6 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Momentum for TensorFlow."""
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import gen_training_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.training import optimizer
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
|
|
@tf_export(v1=["train.MomentumOptimizer"])
|
|
class MomentumOptimizer(optimizer.Optimizer):
|
|
"""Optimizer that implements the Momentum algorithm.
|
|
|
|
Computes (if `use_nesterov = False`):
|
|
|
|
```
|
|
accumulation = momentum * accumulation + gradient
|
|
variable -= learning_rate * accumulation
|
|
```
|
|
|
|
Note that in the dense version of this algorithm, `accumulation` is updated
|
|
and applied regardless of a gradient's value, whereas the sparse version (when
|
|
the gradient is an `IndexedSlices`, typically because of `tf.gather` or an
|
|
embedding) only updates variable slices and corresponding `accumulation` terms
|
|
when that part of the variable was used in the forward pass.
|
|
|
|
@compatibility(TF2)
|
|
tf.compat.v1.train.MomentumOptimizer is compatible with eager mode and
|
|
`tf.function`.
|
|
When eager execution is enabled, `learning_rate`,`momentum`, can each be a
|
|
callable that takes no arguments and returns the actual value to use. This
|
|
can be useful for changing these values across different invocations of
|
|
optimizer functions.
|
|
|
|
To switch to native TF2 style, please directly use
|
|
[`tf.keras.optimizers.SGD`]
|
|
(https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD)
|
|
with the `momentum` argument.
|
|
|
|
#### Structural mapping to native TF2
|
|
|
|
Before:
|
|
|
|
```python
|
|
optimizer = tf.compat.v1.train.MomentumOptimizer(
|
|
learning_rate=learning_rate,
|
|
momentum=momentum,
|
|
use_nesterov=use_nesterov)
|
|
```
|
|
|
|
After:
|
|
|
|
```python
|
|
optimizer = tf.keras.optimizers.SGD(
|
|
learning_rate=learning_rate,
|
|
momentum=momentum,
|
|
nesterov=use_nesterov)
|
|
```
|
|
|
|
#### How to map arguments
|
|
| TF1 Arg Name | TF2 Arg Name | Note |
|
|
| ------------------ | ------------- | ------------------------------- |
|
|
| `learning_rate` | `learning_rate`| Be careful of setting |
|
|
: : : learning_rate tensor value computed from the global step. :
|
|
: : : In TF1 this was usually meant to imply a dynamic learning rate and :
|
|
: : : would recompute in each step. In TF2 (eager + function) it will :
|
|
: : : treat it as a scalar value that only gets computed once instead of :
|
|
: : : a symbolic placeholder to be computed each time. :
|
|
| `momentum` | `momentum` | - |
|
|
| `use_locking` | - | Not applicable in TF2. |
|
|
| `use_nesterov` | `nesterov` | - |
|
|
|
|
#### Before & after usage example
|
|
Before:
|
|
|
|
```python
|
|
x = tf.Variable([1,2,3], dtype=tf.float32)
|
|
grad = tf.constant([0.1, 0.2, 0.3])
|
|
optimizer = tf.compat.v1.train.MomentumOptimizer(
|
|
learning_rate=0.001,
|
|
momentum=0.9,
|
|
use_nesterov=False)
|
|
optimizer.apply_gradients(zip([grad], [x]))
|
|
```
|
|
|
|
After:
|
|
|
|
```python
|
|
x = tf.Variable([1,2,3], dtype=tf.float32)
|
|
grad = tf.constant([0.1, 0.2, 0.3])
|
|
optimizer = tf.keras.optimizers.SGD(
|
|
learning_rate=0.001,
|
|
momentum=0.9,
|
|
nesterov=False)
|
|
optimizer.apply_gradients(zip([grad], [x]))
|
|
```
|
|
|
|
@end_compatibility
|
|
|
|
"""
|
|
|
|
def __init__(self, learning_rate, momentum,
|
|
use_locking=False, name="Momentum", use_nesterov=False):
|
|
"""Construct a new Momentum optimizer.
|
|
|
|
Args:
|
|
learning_rate: A `Tensor` or a floating point value. The learning rate.
|
|
momentum: A `Tensor` or a floating point value. The momentum.
|
|
use_locking: If `True` use locks for update operations.
|
|
name: Optional name prefix for the operations created when applying
|
|
gradients. Defaults to "Momentum".
|
|
use_nesterov: If `True` use Nesterov Momentum.
|
|
See (Sutskever et al., 2013).
|
|
This implementation always computes gradients at the value of the
|
|
variable(s) passed to the optimizer. Using Nesterov Momentum makes the
|
|
variable(s) track the values called `theta_t + mu*v_t` in the paper.
|
|
This implementation is an approximation of the original formula, valid
|
|
for high values of momentum. It will compute the "adjusted gradient"
|
|
in NAG by assuming that the new gradient will be estimated by the
|
|
current average gradient plus the product of momentum and the change
|
|
in the average gradient.
|
|
|
|
References:
|
|
On the importance of initialization and momentum in deep learning:
|
|
[Sutskever et al., 2013]
|
|
(http://proceedings.mlr.press/v28/sutskever13.html)
|
|
([pdf](http://proceedings.mlr.press/v28/sutskever13.pdf))
|
|
|
|
|
|
"""
|
|
super(MomentumOptimizer, self).__init__(use_locking, name)
|
|
self._learning_rate = learning_rate
|
|
self._momentum = momentum
|
|
self._use_nesterov = use_nesterov
|
|
|
|
def _create_slots(self, var_list):
|
|
for v in var_list:
|
|
self._zeros_slot(v, "momentum", self._name)
|
|
|
|
def _prepare(self):
|
|
learning_rate = self._learning_rate
|
|
if callable(learning_rate):
|
|
learning_rate = learning_rate()
|
|
self._learning_rate_tensor = ops.convert_to_tensor(learning_rate,
|
|
name="learning_rate")
|
|
momentum = self._momentum
|
|
if callable(momentum):
|
|
momentum = momentum()
|
|
self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum")
|
|
|
|
def _apply_dense(self, grad, var):
|
|
mom = self.get_slot(var, "momentum")
|
|
return gen_training_ops.apply_momentum(
|
|
var, mom,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
grad,
|
|
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov).op
|
|
|
|
def _resource_apply_dense(self, grad, var):
|
|
mom = self.get_slot(var, "momentum")
|
|
return gen_training_ops.resource_apply_momentum(
|
|
var.handle, mom.handle,
|
|
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
|
|
grad,
|
|
math_ops.cast(self._momentum_tensor, grad.dtype.base_dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov)
|
|
|
|
def _apply_sparse(self, grad, var):
|
|
mom = self.get_slot(var, "momentum")
|
|
return gen_training_ops.sparse_apply_momentum(
|
|
var, mom,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
grad.values, grad.indices,
|
|
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov).op
|
|
|
|
def _resource_apply_sparse(self, grad, var, indices):
|
|
mom = self.get_slot(var, "momentum")
|
|
return gen_training_ops.resource_sparse_apply_momentum(
|
|
var.handle, mom.handle,
|
|
math_ops.cast(self._learning_rate_tensor, grad.dtype),
|
|
grad, indices,
|
|
math_ops.cast(self._momentum_tensor, grad.dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov)
|