3RNN/Lib/site-packages/tensorflow/python/training/monitored_session.py
2024-05-26 19:49:15 +02:00

1544 lines
59 KiB
Python

# pylint: disable=g-bad-file-header
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A wrapper of Session API which runs hooks."""
import abc
import os
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.checkpoint import checkpoint as trackable_util
from tensorflow.python.checkpoint import graph_view
from tensorflow.python.distribute import distribute_coordinator_context
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import lookup_ops
from tensorflow.python.ops import resources
from tensorflow.python.ops import variables
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.summary import summary
from tensorflow.python.training import basic_session_run_hooks
from tensorflow.python.training import coordinator
from tensorflow.python.training import queue_runner
from tensorflow.python.training import saver as training_saver
from tensorflow.python.training import session_manager as sm
from tensorflow.python.training import session_run_hook
from tensorflow.python.util import function_utils
from tensorflow.python.util.tf_export import tf_export
# The list of exceptions that we should recover from. Exceptions not in this
# list may terminate the job.
_PREEMPTION_ERRORS = (errors.AbortedError, errors.UnavailableError)
# Value that indicates no value was provided.
USE_DEFAULT = object()
@tf_export(v1=['train.Scaffold'])
class Scaffold:
"""Structure to create or gather pieces commonly needed to train a model.
When you build a model for training you usually need ops to initialize
variables, a `Saver` to checkpoint them, an op to collect summaries for
the visualizer, and so on.
Various libraries built on top of the core TensorFlow library take care of
creating some or all of these pieces and storing them in well known
collections in the graph. The `Scaffold` class helps pick these pieces from
the graph collections, creating and adding them to the collections if needed.
If you call the scaffold constructor without any arguments, it will pick
pieces from the collections, creating default ones if needed when
`scaffold.finalize()` is called. You can pass arguments to the constructor to
provide your own pieces. Pieces that you pass to the constructor are not
added to the graph collections.
The following pieces are directly accessible as attributes of the `Scaffold`
object:
* `saver`: A `tf.compat.v1.train.Saver` object taking care of saving the
variables.
Picked from and stored into the `SAVERS` collection in the graph by default.
* `init_op`: An op to run to initialize the variables. Picked from and
stored into the `INIT_OP` collection in the graph by default.
* `ready_op`: An op to verify that the variables are initialized. Picked
from and stored into the `READY_OP` collection in the graph by default.
* `ready_for_local_init_op`: An op to verify that global state has been
initialized and it is alright to run `local_init_op`. Picked from and
stored into the `READY_FOR_LOCAL_INIT_OP` collection in the graph by
default. This is needed when the initialization of local variables depends
on the values of global variables.
* `local_init_op`: An op to initialize the local variables. Picked
from and stored into the `LOCAL_INIT_OP` collection in the graph by default.
* `summary_op`: An op to run and merge the summaries in the graph. Picked
from and stored into the `SUMMARY_OP` collection in the graph by default.
You can also pass the following additional pieces to the constructor:
* `init_feed_dict`: A session feed dictionary that should be used when
running the init op.
* `init_fn`: A callable to run after the init op to perform additional
initializations. The callable will be called as
`init_fn(scaffold, session)`.
"""
def __init__(self,
init_op=None,
init_feed_dict=None,
init_fn=None,
ready_op=None,
ready_for_local_init_op=None,
local_init_op=None,
summary_op=None,
saver=None,
copy_from_scaffold=None,
local_init_feed_dict=None):
"""Create a scaffold.
Args:
init_op: Optional op for initializing variables.
init_feed_dict: Optional session feed dictionary to use when running the
init_op.
init_fn: Optional function to use to initialize the model after running
the init_op. Will be called as `init_fn(scaffold, session)`.
ready_op: Optional op to verify that the variables are initialized. Must
return an empty 1D string tensor when the variables are initialized, or
a non-empty 1D string tensor listing the names of the non-initialized
variables.
ready_for_local_init_op: Optional op to verify that the global variables
are initialized and `local_init_op` can be run. Must return an empty 1D
string tensor when the global variables are initialized, or a non-empty
1D string tensor listing the names of the non-initialized global
variables.
local_init_op: Optional op to initialize local variables.
summary_op: Optional op to gather all summaries. Must return a scalar
string tensor containing a serialized `Summary` proto.
saver: Optional `tf.compat.v1.train.Saver` object to use to save and
restore variables. May also be a `tf.train.Checkpoint` object, in which
case object-based checkpoints are saved. This will also load some
object-based checkpoints saved from elsewhere, but that loading may be
fragile since it uses fixed keys rather than performing a full
graph-based match. For example if a variable has two paths from the
`Checkpoint` object because two `Model` objects share the `Layer` object
that owns it, removing one `Model` may change the keys and break
checkpoint loading through this API, whereas a graph-based match would
match the variable through the other `Model`.
copy_from_scaffold: Optional scaffold object to copy fields from. Its
fields will be overwritten by the provided fields in this function.
local_init_feed_dict: Optional session feed dictionary to use when running
the local_init_op.
"""
if copy_from_scaffold is not None:
if not isinstance(copy_from_scaffold, Scaffold):
raise TypeError('copy_from_scaffold is not a Scaffold instance.')
# We need _coalesce since Tensor is not converted to bool automatically,
# so the common idiom of (a or b) does not work.
coalesce = lambda a, b: a if a is not None else b
init_op = coalesce(init_op, copy_from_scaffold.init_op)
init_feed_dict = coalesce(init_feed_dict,
copy_from_scaffold.init_feed_dict)
# Use the original init_fn provided by the user to init the new Scaffold.
init_fn = coalesce(init_fn, copy_from_scaffold._user_init_fn) # pylint: disable=protected-access
ready_op = coalesce(ready_op, copy_from_scaffold.ready_op)
ready_for_local_init_op = coalesce(
ready_for_local_init_op, copy_from_scaffold.ready_for_local_init_op)
local_init_op = coalesce(local_init_op, copy_from_scaffold.local_init_op)
local_init_feed_dict = coalesce(local_init_feed_dict,
copy_from_scaffold.local_init_feed_dict)
summary_op = coalesce(summary_op, copy_from_scaffold.summary_op)
saver = coalesce(saver, copy_from_scaffold.saver)
# NOTE(touts): modifying the init function to be passed the scaffold is a
# hack to make it easy to find the saver. Is there a better way?
self._user_init_fn = init_fn
if init_fn:
self._init_fn = lambda sess: init_fn(self, sess)
else:
self._init_fn = None
self._init_op = init_op
self._init_feed_dict = init_feed_dict
self._ready_op = ready_op
self._ready_for_local_init_op = ready_for_local_init_op
self._local_init_op = local_init_op
self._local_init_feed_dict = local_init_feed_dict
self._summary_op = summary_op
self._saver = saver
def finalize(self):
"""Creates operations if needed and finalizes the graph."""
if self._init_op is None:
def default_init_op():
return control_flow_ops.group(
variables.global_variables_initializer(),
resources.initialize_resources(resources.shared_resources()),
ops.get_collection('saved_model_initializers'))
self._init_op = Scaffold.get_or_default('init_op', ops.GraphKeys.INIT_OP,
default_init_op)
if self._ready_op is None:
def default_ready_op():
return array_ops.concat([
variables.report_uninitialized_variables(),
resources.report_uninitialized_resources()
], 0)
self._ready_op = Scaffold.get_or_default('ready_op',
ops.GraphKeys.READY_OP,
default_ready_op)
if self._ready_for_local_init_op is None:
def default_ready_for_local_init_op():
return array_ops.concat([
variables.report_uninitialized_variables(
variables.global_variables()),
resources.report_uninitialized_resources(
resources.shared_resources())
], 0)
self._ready_for_local_init_op = Scaffold.get_or_default(
'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP,
default_ready_for_local_init_op)
if self._local_init_op is None:
self._local_init_op = Scaffold.get_or_default(
'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
Scaffold.default_local_init_op)
if self._summary_op is None:
self._summary_op = Scaffold.get_or_default('summary_op',
ops.GraphKeys.SUMMARY_OP,
summary.merge_all)
# pylint: disable=g-long-lambda
if self._saver is None:
self._saver = training_saver._get_saver_or_default() # pylint: disable=protected-access
# pylint: enable=g-long-lambda
if isinstance(self._saver, trackable_util.Checkpoint):
self._saver = training_saver.Saver(
var_list=graph_view.ObjectGraphView(
self._saver).frozen_saveable_objects(),
sharded=True)
else:
self._saver.build()
ops.get_default_graph().finalize()
logging.info('Graph was finalized.')
return self
@property
def init_fn(self):
return self._init_fn
@property
def init_op(self):
return self._init_op
@property
def ready_op(self):
return self._ready_op
@property
def ready_for_local_init_op(self):
return self._ready_for_local_init_op
@property
def local_init_op(self):
return self._local_init_op
@property
def local_init_feed_dict(self):
return self._local_init_feed_dict
@property
def summary_op(self):
return self._summary_op
@property
def saver(self):
return self._saver
@property
def init_feed_dict(self):
return self._init_feed_dict
@staticmethod
def get_or_default(arg_name, collection_key, default_constructor):
"""Get from cache or create a default operation."""
elements = ops.get_collection(collection_key)
if elements:
if len(elements) > 1:
raise RuntimeError(
'More than one item in the collection "%s". '
'Please indicate which one to use by passing it to '
'the tf.Scaffold constructor as: '
'tf.Scaffold(%s=item to use)', collection_key, arg_name)
return elements[0]
op = default_constructor()
if op is not None:
ops.add_to_collection(collection_key, op)
return op
@staticmethod
def default_local_init_op():
"""Returns an op that groups the default local init ops.
This op is used during session initialization when a Scaffold is
initialized without specifying the local_init_op arg. It includes
`tf.compat.v1.local_variables_initializer`,
`tf.compat.v1.tables_initializer`, and also
initializes local session resources.
Returns:
The default Scaffold local init op.
"""
return control_flow_ops.group(
variables.local_variables_initializer(),
lookup_ops.tables_initializer(),
resources.initialize_resources(resources.local_resources()))
def _create_monitored_session_with_worker_context(
worker_context, # pylint: disable=missing-docstring
scaffold,
checkpoint_dir=None,
hooks=None,
chief_only_hooks=None,
save_checkpoint_secs=None,
save_summaries_steps=None,
save_summaries_secs=None,
config=None,
stop_grace_period_secs=120,
log_step_count_steps=100,
max_wait_secs=7200,
save_checkpoint_steps=None,
summary_dir=None,
save_graph_def=True):
all_hooks = []
if hooks:
all_hooks.extend(hooks)
if chief_only_hooks and worker_context.is_chief:
all_hooks.extend(chief_only_hooks)
# We need to call save or summary ops on all workers since these ops may
# contain collective ops, only running save ops on some workers would make
# collective ops hang. Therefore on those workers that don't need to actually
# write checkpoints or summaries, we let them write to a temp directory.
# pylint: disable=protected-access
if type(
worker_context._strategy).__name__ in ('CollectiveAllReduceStrategy',
'CollectiveAllReduceStrategyV1',
'MultiWorkerMirroredStrategy'):
if worker_context.task_type:
tmpdir = 'tmp_%s_%d' % (worker_context.task_type, worker_context.task_id)
else:
tmpdir = 'tmp'
if save_checkpoint_secs:
logging.warning('Collective ops may deadlock with '
'`save_checkpoints_secs` please use '
'`save_checkpoint_steps` instead. Clearing '
'`save_checkpoint_secs` and setting '
'`save_checkpoint_steps` to 1000 now.')
save_checkpoint_secs = None
save_checkpoint_steps = 1000
if save_summaries_secs:
logging.warning('Collective ops may run out of sync with'
'`save_summaries_secs`, please use '
'`save_summaries_steps` instead.')
else:
tmpdir = None
summary_dir = summary_dir or checkpoint_dir
if summary_dir and log_step_count_steps and log_step_count_steps > 0:
if worker_context.should_save_summary:
all_hooks.append(
basic_session_run_hooks.StepCounterHook(
output_dir=summary_dir, every_n_steps=log_step_count_steps))
elif tmpdir:
all_hooks.append(
basic_session_run_hooks.StepCounterHook(
output_dir=os.path.join(summary_dir, tmpdir),
every_n_steps=log_step_count_steps))
if (((save_summaries_steps and save_summaries_steps > 0) or
(save_summaries_secs and save_summaries_secs > 0)) and summary_dir):
if worker_context.should_save_summary:
all_hooks.append(
basic_session_run_hooks.SummarySaverHook(
scaffold=scaffold,
save_steps=save_summaries_steps,
save_secs=save_summaries_secs,
output_dir=summary_dir))
elif tmpdir:
all_hooks.append(
basic_session_run_hooks.SummarySaverHook(
scaffold=scaffold,
save_steps=save_summaries_steps,
save_secs=save_summaries_secs,
output_dir=os.path.join(summary_dir, tmpdir)))
if (((save_checkpoint_secs and save_checkpoint_secs > 0) or
(save_checkpoint_steps and save_checkpoint_steps > 0)) and
checkpoint_dir):
if worker_context.should_checkpoint:
all_hooks.append(
basic_session_run_hooks.CheckpointSaverHook(
checkpoint_dir,
save_steps=save_checkpoint_steps,
save_secs=save_checkpoint_secs,
scaffold=scaffold,
save_graph_def=save_graph_def))
elif tmpdir:
all_hooks.append(
basic_session_run_hooks.CheckpointSaverHook(
os.path.join(checkpoint_dir, tmpdir),
save_steps=save_checkpoint_steps,
save_secs=save_checkpoint_secs,
scaffold=scaffold,
save_graph_def=save_graph_def))
logging.info('all_hooks %r', all_hooks)
session_creator = worker_context.session_creator(
scaffold,
config=config,
checkpoint_dir=checkpoint_dir,
max_wait_secs=max_wait_secs)
return MonitoredSession(
session_creator=session_creator,
hooks=all_hooks,
stop_grace_period_secs=stop_grace_period_secs)
@tf_export(v1=['train.MonitoredTrainingSession'])
def MonitoredTrainingSession(
master='', # pylint: disable=invalid-name
is_chief=True,
checkpoint_dir=None,
scaffold=None,
hooks=None,
chief_only_hooks=None,
save_checkpoint_secs=USE_DEFAULT,
save_summaries_steps=USE_DEFAULT,
save_summaries_secs=USE_DEFAULT,
config=None,
stop_grace_period_secs=120,
log_step_count_steps=100,
max_wait_secs=7200,
save_checkpoint_steps=USE_DEFAULT,
summary_dir=None,
save_graph_def=True):
"""Creates a `MonitoredSession` for training.
For a chief, this utility sets proper session initializer/restorer. It also
creates hooks related to checkpoint and summary saving. For workers, this
utility sets proper session creator which waits for the chief to
initialize/restore. Please check `tf.compat.v1.train.MonitoredSession` for
more
information.
@compatibility(TF2)
This API is not compatible with eager execution and `tf.function`. To migrate
to TF2, rewrite the code to be compatible with eager execution. Check the
[migration
guide](https://www.tensorflow.org/guide/migrate#1_replace_v1sessionrun_calls)
on replacing `Session.run` calls. In Keras, session hooks can be replaced by
Callbacks e.g. [logging hook notebook](
https://github.com/tensorflow/docs/blob/master/site/en/guide/migrate/logging_stop_hook.ipynb)
For more details please read [Better
performance with tf.function](https://www.tensorflow.org/guide/function).
@end_compatibility
Args:
master: `String` the TensorFlow master to use.
is_chief: If `True`, it will take care of initialization and recovery the
underlying TensorFlow session. If `False`, it will wait on a chief to
initialize or recover the TensorFlow session.
checkpoint_dir: A string. Optional path to a directory where to restore
variables.
scaffold: A `Scaffold` used for gathering or building supportive ops. If not
specified, a default one is created. It's used to finalize the graph.
hooks: Optional list of `SessionRunHook` objects.
chief_only_hooks: list of `SessionRunHook` objects. Activate these hooks if
`is_chief==True`, ignore otherwise.
save_checkpoint_secs: The frequency, in seconds, that a checkpoint is saved
using a default checkpoint saver. If both `save_checkpoint_steps` and
`save_checkpoint_secs` are set to `None`, then the default checkpoint
saver isn't used. If both are provided, then only `save_checkpoint_secs`
is used. Default 600.
save_summaries_steps: The frequency, in number of global steps, that the
summaries are written to disk using a default summary saver. If both
`save_summaries_steps` and `save_summaries_secs` are set to `None`, then
the default summary saver isn't used. Default 100.
save_summaries_secs: The frequency, in secs, that the summaries are written
to disk using a default summary saver. If both `save_summaries_steps` and
`save_summaries_secs` are set to `None`, then the default summary saver
isn't used. Default not enabled.
config: an instance of `tf.compat.v1.ConfigProto` proto used to configure
the session. It's the `config` argument of constructor of
`tf.compat.v1.Session`.
stop_grace_period_secs: Number of seconds given to threads to stop after
`close()` has been called.
log_step_count_steps: The frequency, in number of global steps, that the
global step/sec is logged.
max_wait_secs: Maximum time workers should wait for the session to become
available. This should be kept relatively short to help detect incorrect
code, but sometimes may need to be increased if the chief takes a while to
start up.
save_checkpoint_steps: The frequency, in number of global steps, that a
checkpoint is saved using a default checkpoint saver. If both
`save_checkpoint_steps` and `save_checkpoint_secs` are set to `None`, then
the default checkpoint saver isn't used. If both are provided, then only
`save_checkpoint_secs` is used. Default not enabled.
summary_dir: A string. Optional path to a directory where to save
summaries. If None, checkpoint_dir is used instead.
save_graph_def: Whether to save the GraphDef and MetaGraphDef to
`checkpoint_dir`. The GraphDef is saved after the session is created as
`graph.pbtxt`. MetaGraphDefs are saved out for every checkpoint as
`model.ckpt-*.meta`.
Returns:
A `MonitoredSession` object.
"""
if save_summaries_steps == USE_DEFAULT and save_summaries_secs == USE_DEFAULT:
save_summaries_steps = 100
save_summaries_secs = None
elif save_summaries_secs == USE_DEFAULT:
save_summaries_secs = None
elif save_summaries_steps == USE_DEFAULT:
save_summaries_steps = None
if (save_checkpoint_steps == USE_DEFAULT and
save_checkpoint_secs == USE_DEFAULT):
save_checkpoint_steps = None
save_checkpoint_secs = 600
elif save_checkpoint_secs == USE_DEFAULT:
save_checkpoint_secs = None
elif save_checkpoint_steps == USE_DEFAULT:
save_checkpoint_steps = None
scaffold = scaffold or Scaffold()
worker_context = distribute_coordinator_context.get_current_worker_context()
if worker_context:
return _create_monitored_session_with_worker_context(
worker_context,
scaffold,
checkpoint_dir=checkpoint_dir,
hooks=hooks,
chief_only_hooks=chief_only_hooks,
save_checkpoint_secs=save_checkpoint_secs,
save_summaries_steps=save_summaries_steps,
save_summaries_secs=save_summaries_secs,
config=config,
stop_grace_period_secs=stop_grace_period_secs,
log_step_count_steps=log_step_count_steps,
max_wait_secs=max_wait_secs,
save_checkpoint_steps=save_checkpoint_steps,
summary_dir=summary_dir,
save_graph_def=save_graph_def)
if not is_chief:
session_creator = WorkerSessionCreator(
scaffold=scaffold,
master=master,
config=config,
max_wait_secs=max_wait_secs)
return MonitoredSession(
session_creator=session_creator,
hooks=hooks or [],
stop_grace_period_secs=stop_grace_period_secs)
all_hooks = []
if chief_only_hooks:
all_hooks.extend(chief_only_hooks)
session_creator = ChiefSessionCreator(
scaffold=scaffold,
checkpoint_dir=checkpoint_dir,
master=master,
config=config)
summary_dir = summary_dir or checkpoint_dir
if summary_dir:
if log_step_count_steps and log_step_count_steps > 0:
all_hooks.append(
basic_session_run_hooks.StepCounterHook(
output_dir=summary_dir, every_n_steps=log_step_count_steps))
if (save_summaries_steps and
save_summaries_steps > 0) or (save_summaries_secs and
save_summaries_secs > 0):
all_hooks.append(
basic_session_run_hooks.SummarySaverHook(
scaffold=scaffold,
save_steps=save_summaries_steps,
save_secs=save_summaries_secs,
output_dir=summary_dir))
if checkpoint_dir:
if (save_checkpoint_secs and
save_checkpoint_secs > 0) or (save_checkpoint_steps and
save_checkpoint_steps > 0):
all_hooks.append(
basic_session_run_hooks.CheckpointSaverHook(
checkpoint_dir,
save_steps=save_checkpoint_steps,
save_secs=save_checkpoint_secs,
scaffold=scaffold,
save_graph_def=save_graph_def))
if hooks:
all_hooks.extend(hooks)
return MonitoredSession(
session_creator=session_creator,
hooks=all_hooks,
stop_grace_period_secs=stop_grace_period_secs)
@tf_export(v1=['train.SessionCreator'])
class SessionCreator(metaclass=abc.ABCMeta):
"""A factory for tf.Session."""
@abc.abstractmethod
def create_session(self):
raise NotImplementedError(
'create_session is not implemented for {}.'.format(self))
@tf_export(v1=['train.ChiefSessionCreator'])
class ChiefSessionCreator(SessionCreator):
"""Creates a tf.compat.v1.Session for a chief."""
def __init__(self,
scaffold=None,
master='',
config=None,
checkpoint_dir=None,
checkpoint_filename_with_path=None):
"""Initializes a chief session creator.
Args:
scaffold: A `Scaffold` used for gathering or building supportive ops. If
not specified a default one is created. It's used to finalize the graph.
master: `String` representation of the TensorFlow master to use.
config: `ConfigProto` proto used to configure the session.
checkpoint_dir: A string. Optional path to a directory where to restore
variables.
checkpoint_filename_with_path: Full file name path to the checkpoint file.
"""
self._checkpoint_dir = checkpoint_dir
self._checkpoint_filename_with_path = checkpoint_filename_with_path
self._scaffold = scaffold or Scaffold()
self._session_manager = None
self._master = master
self._config = config
def _get_session_manager(self):
"""Gets or creates a SessionManager."""
if self._session_manager:
return self._session_manager
self._session_manager = sm.SessionManager(
local_init_op=self._scaffold.local_init_op,
local_init_feed_dict=self._scaffold.local_init_feed_dict,
ready_op=self._scaffold.ready_op,
ready_for_local_init_op=self._scaffold.ready_for_local_init_op,
graph=ops.get_default_graph())
return self._session_manager
def create_session(self):
self._scaffold.finalize()
return self._get_session_manager().prepare_session(
self._master,
saver=self._scaffold.saver,
checkpoint_dir=self._checkpoint_dir,
checkpoint_filename_with_path=self._checkpoint_filename_with_path,
config=self._config,
init_op=self._scaffold.init_op,
init_feed_dict=self._scaffold.init_feed_dict,
init_fn=self._scaffold.init_fn)
@tf_export(v1=['train.WorkerSessionCreator'])
class WorkerSessionCreator(SessionCreator):
"""Creates a tf.compat.v1.Session for a worker."""
def __init__(self,
scaffold=None,
master='',
config=None,
max_wait_secs=30 * 60):
"""Initializes a worker session creator.
Args:
scaffold: A `Scaffold` used for gathering or building supportive ops. If
not specified a default one is created. It's used to finalize the graph.
master: `String` representation of the TensorFlow master to use.
config: `ConfigProto` proto used to configure the session.
max_wait_secs: Maximum time to wait for the session to become available.
"""
self._scaffold = scaffold or Scaffold()
self._session_manager = None
self._master = master
self._config = config
self._max_wait_secs = max_wait_secs
def _get_session_manager(self):
"""Gets or creates a SessionManager."""
if self._session_manager:
return self._session_manager
self._session_manager = sm.SessionManager(
local_init_op=self._scaffold.local_init_op,
local_init_feed_dict=self._scaffold.local_init_feed_dict,
ready_op=self._scaffold.ready_op,
ready_for_local_init_op=self._scaffold.ready_for_local_init_op,
graph=ops.get_default_graph())
return self._session_manager
def create_session(self):
self._scaffold.finalize()
return self._get_session_manager().wait_for_session(
self._master, config=self._config, max_wait_secs=self._max_wait_secs)
class _MonitoredSession:
"""See `MonitoredSession` or `SingularMonitoredSession`."""
def __init__(self,
session_creator,
hooks,
should_recover,
stop_grace_period_secs=120):
"""Sets up a Monitored or Hooked Session.
Args:
session_creator: A factory object to create session. Typically a
`ChiefSessionCreator` or a `WorkerSessionCreator`.
hooks: An iterable of `SessionRunHook' objects.
should_recover: A bool. Indicates whether to recover from `AbortedError`
and `UnavailableError` or not.
stop_grace_period_secs: Number of seconds given to threads to stop after
`close()` has been called.
"""
self._graph_was_finalized = ops.get_default_graph().finalized
self._hooks = hooks or []
for h in self._hooks:
h.begin()
worker_context = distribute_coordinator_context.get_current_worker_context()
if not session_creator and worker_context:
session_creator = worker_context.session_creator()
# Create the session.
self._coordinated_creator = self._CoordinatedSessionCreator(
session_creator=session_creator or ChiefSessionCreator(),
hooks=self._hooks,
stop_grace_period_secs=stop_grace_period_secs)
if should_recover:
self._sess = _RecoverableSession(self._coordinated_creator)
else:
self._sess = self._coordinated_creator.create_session()
@property
def graph(self):
"""The graph that was launched in this session."""
if self._tf_sess() is None:
return None
return self._tf_sess().graph
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
"""Run ops in the monitored session.
This method is completely compatible with the `tf.Session.run()` method.
Args:
fetches: Same as `tf.Session.run()`.
feed_dict: Same as `tf.Session.run()`.
options: Same as `tf.Session.run()`.
run_metadata: Same as `tf.Session.run()`.
Returns:
Same as `tf.Session.run()`.
"""
return self._sess.run(
fetches,
feed_dict=feed_dict,
options=options,
run_metadata=run_metadata)
def run_step_fn(self, step_fn):
"""Run ops using a step function.
Args:
step_fn: A function or a method with a single argument of type
`StepContext`. The function may use methods of the argument to perform
computations with access to a raw session. The returned value of the
`step_fn` will be returned from `run_step_fn`, unless a stop is
requested. In that case, the next `should_stop` call will return True.
Example usage:
```python
with tf.Graph().as_default():
c = tf.compat.v1.placeholder(dtypes.float32)
v = tf.add(c, 4.0)
w = tf.add(c, 0.5)
def step_fn(step_context):
a = step_context.session.run(fetches=v, feed_dict={c: 0.5})
if a <= 4.5:
step_context.request_stop()
return step_context.run_with_hooks(fetches=w,
feed_dict={c: 0.1})
with tf.MonitoredSession() as session:
while not session.should_stop():
a = session.run_step_fn(step_fn)
```
Hooks interact with the `run_with_hooks()` call inside the
`step_fn` as they do with a `MonitoredSession.run` call.
Returns:
Returns the returned value of `step_fn`.
Raises:
StopIteration: if `step_fn` has called `request_stop()`. It may be
caught by `with tf.MonitoredSession()` to close the session.
ValueError: if `step_fn` doesn't have a single argument called
`step_context`. It may also optionally have `self` for cases when it
belongs to an object.
"""
step_fn_arguments = function_utils.fn_args(step_fn)
if step_fn_arguments != ('step_context',) and step_fn_arguments != (
'self',
'step_context',
):
raise ValueError(
'`step_fn` may either have one `step_context` argument, or'
' `self` and `step_context` arguments if it\'s an instance'
' method. Got {} instead.'.format(step_fn_arguments))
# `self._sess` is either `_RecoverableSession` or a `_CoordinatedSession`.
# Setting `run_with_hooks` to `None` will cause `run_with_hooks` to be
# `_CoordinatedSession.run` downstream in either case. This allows
# `_PREEMPTION_ERRORS` to propage from within `step_fn` to
# `_RecoverableSession.run_step_fn`.
return self._sess.run_step_fn(step_fn, self._tf_sess(), run_with_hooks=None)
class StepContext:
"""Control flow instrument for the `step_fn` from `run_step_fn()`.
Users of `step_fn` may perform `run()` calls without running hooks
by accessing the `session`. A `run()` call with hooks may be performed
using `run_with_hooks()`. Computation flow can be interrupted using
`request_stop()`.
"""
def __init__(self, session, run_with_hooks_fn):
"""Initializes the `step_context` argument for a `step_fn` invocation.
Args:
session: An instance of `tf.compat.v1.Session`.
run_with_hooks_fn: A function for running fetches and hooks.
"""
self._session = session
self._run_with_hooks_fn = run_with_hooks_fn
@property
def session(self):
return self._session
def run_with_hooks(self, *args, **kwargs):
"""Same as `MonitoredSession.run`. Accepts the same arguments."""
return self._run_with_hooks_fn(*args, **kwargs)
def request_stop(self):
"""Exit the training loop by causing `should_stop()` to return `True`.
Causes `step_fn` to exit by raising an exception.
Raises:
StopIteration
"""
raise StopIteration('step_fn has requested the iterations to stop.')
def should_stop(self):
return self._sess is None or self._sess.should_stop()
def close(self):
self._close_internal()
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
if exception_type in [errors.OutOfRangeError, StopIteration]:
exception_type = None
self._close_internal(exception_type)
# __exit__ should return True to suppress an exception.
return exception_type is None
class _CoordinatedSessionCreator(SessionCreator):
"""Factory for _CoordinatedSession."""
def __init__(self, session_creator, hooks, stop_grace_period_secs):
self._session_creator = session_creator
self._hooks = hooks
self.coord = None
self.tf_sess = None
self._stop_grace_period_secs = stop_grace_period_secs
def create_session(self):
"""Creates a coordinated session."""
# Keep the tf_sess for unit testing.
self.tf_sess = self._session_creator.create_session()
# We don't want coordinator to suppress any exception.
self.coord = coordinator.Coordinator(clean_stop_exception_types=[])
if ops.get_collection(ops.GraphKeys.QUEUE_RUNNERS):
queue_runner.start_queue_runners(sess=self.tf_sess, coord=self.coord)
# Inform the hooks that a new session has been created.
for hook in self._hooks:
hook.after_create_session(self.tf_sess, self.coord)
return _CoordinatedSession(
_HookedSession(self.tf_sess, self._hooks), self.coord,
self._stop_grace_period_secs)
def _close_internal(self, exception_type=None):
try:
if not exception_type:
for h in self._hooks:
h.end(self._coordinated_creator.tf_sess)
finally:
try:
if self._sess is None:
raise RuntimeError('Session is already closed.')
self._sess.close()
finally:
self._sess = None
self._coordinated_creator.tf_sess = None
self._coordinated_creator.coord = None
if not self._graph_was_finalized:
ops.get_default_graph()._unsafe_unfinalize() # pylint: disable=protected-access
def _is_closed(self):
"""Return True if the monitored session is closed.
For tests only.
Returns:
A boolean.
"""
return self._coordinated_creator.tf_sess is None
def _tf_sess(self):
"""Return underlying tf.compat.v1.Session object.
Warning: accessing the returned object in user code is likely to cause races
or "flaky tests".
Returns:
A tf.compat.v1.Session object.
"""
return self._coordinated_creator.tf_sess
@tf_export(v1=['train.MonitoredSession'])
class MonitoredSession(_MonitoredSession):
"""Session-like object that handles initialization, recovery and hooks.
Example usage:
```python
saver_hook = CheckpointSaverHook(...)
summary_hook = SummarySaverHook(...)
with MonitoredSession(session_creator=ChiefSessionCreator(...),
hooks=[saver_hook, summary_hook]) as sess:
while not sess.should_stop():
sess.run(train_op)
```
Initialization: At creation time the monitored session does following things
in given order:
* calls `hook.begin()` for each given hook
* finalizes the graph via `scaffold.finalize()`
* create session
* initializes the model via initialization ops provided by `Scaffold`
* restores variables if a checkpoint exists
* launches queue runners
* calls `hook.after_create_session()`
Run: When `run()` is called, the monitored session does following things:
* calls `hook.before_run()`
* calls TensorFlow `session.run()` with merged fetches and feed_dict
* calls `hook.after_run()`
* returns result of `session.run()` asked by user
* if `AbortedError` or `UnavailableError` occurs, it recovers or
reinitializes the session before executing the run() call again
Exit: At the `close()`, the monitored session does following things in order:
* calls `hook.end()`
* closes the queue runners and the session
* suppresses `OutOfRange` error which indicates that all inputs have been
processed if the monitored_session is used as a context
How to set `tf.compat.v1.Session` arguments:
* In most cases you can set session arguments as follows:
```python
MonitoredSession(
session_creator=ChiefSessionCreator(master=..., config=...))
```
* In distributed setting for a non-chief worker, you can use following:
```python
MonitoredSession(
session_creator=WorkerSessionCreator(master=..., config=...))
```
See `MonitoredTrainingSession` for an example usage based on chief or worker.
Note: This is not a `tf.compat.v1.Session`. For example, it cannot do
following:
* it cannot be set as default session.
* it cannot be sent to saver.save.
* it cannot be sent to tf.train.start_queue_runners.
@compatibility(TF2)
This API is not compatible with eager execution and `tf.function`. To migrate
to TF2, rewrite the code to be compatible with eager execution. Check the
[migration
guide](https://www.tensorflow.org/guide/migrate#1_replace_v1sessionrun_calls)
on replacing `Session.run` calls. In Keras, session hooks can be replaced by
Callbacks e.g. [logging hook notebook](
https://github.com/tensorflow/docs/blob/master/site/en/guide/migrate/logging_stop_hook.ipynb)
For more details please read [Better
performance with tf.function](https://www.tensorflow.org/guide/function).
@end_compatibility
Args:
session_creator: A factory object to create session. Typically a
`ChiefSessionCreator` which is the default one.
hooks: An iterable of `SessionRunHook' objects.
Returns:
A MonitoredSession object.
"""
def __init__(self,
session_creator=None,
hooks=None,
stop_grace_period_secs=120):
super(MonitoredSession, self).__init__(
session_creator,
hooks,
should_recover=True,
stop_grace_period_secs=stop_grace_period_secs)
@tf_export(v1=['train.SingularMonitoredSession'])
class SingularMonitoredSession(_MonitoredSession):
"""Session-like object that handles initialization, restoring, and hooks.
Please note that this utility is not recommended for distributed settings.
For distributed settings, please use `tf.compat.v1.train.MonitoredSession`.
The
differences between `MonitoredSession` and `SingularMonitoredSession` are:
* `MonitoredSession` handles `AbortedError` and `UnavailableError` for
distributed settings, but `SingularMonitoredSession` does not.
* `MonitoredSession` can be created in `chief` or `worker` modes.
`SingularMonitoredSession` is always created as `chief`.
* You can access the raw `tf.compat.v1.Session` object used by
`SingularMonitoredSession`, whereas in MonitoredSession the raw session is
private. This can be used:
- To `run` without hooks.
- To save and restore.
* All other functionality is identical.
Example usage:
```python
saver_hook = CheckpointSaverHook(...)
summary_hook = SummarySaverHook(...)
with SingularMonitoredSession(hooks=[saver_hook, summary_hook]) as sess:
while not sess.should_stop():
sess.run(train_op)
```
Initialization: At creation time the hooked session does following things
in given order:
* calls `hook.begin()` for each given hook
* finalizes the graph via `scaffold.finalize()`
* create session
* initializes the model via initialization ops provided by `Scaffold`
* restores variables if a checkpoint exists
* launches queue runners
Run: When `run()` is called, the hooked session does following things:
* calls `hook.before_run()`
* calls TensorFlow `session.run()` with merged fetches and feed_dict
* calls `hook.after_run()`
* returns result of `session.run()` asked by user
Exit: At the `close()`, the hooked session does following things in order:
* calls `hook.end()`
* closes the queue runners and the session
* suppresses `OutOfRange` error which indicates that all inputs have been
processed if the `SingularMonitoredSession` is used as a context.
@compatibility(TF2)
This API is not compatible with eager execution and `tf.function`. To migrate
to TF2, rewrite the code to be compatible with eager execution. Check the
[migration
guide](https://www.tensorflow.org/guide/migrate#1_replace_v1sessionrun_calls)
on replacing `Session.run` calls. In Keras, session hooks can be replaced by
Callbacks e.g. [logging hook notebook](
https://github.com/tensorflow/docs/blob/master/site/en/guide/migrate/logging_stop_hook.ipynb)
For more details please read [Better
performance with tf.function](https://www.tensorflow.org/guide/function).
@end_compatibility
"""
def __init__(self,
hooks=None,
scaffold=None,
master='',
config=None,
checkpoint_dir=None,
stop_grace_period_secs=120,
checkpoint_filename_with_path=None):
"""Creates a SingularMonitoredSession.
Args:
hooks: An iterable of `SessionRunHook' objects.
scaffold: A `Scaffold` used for gathering or building supportive ops. If
not specified a default one is created. It's used to finalize the graph.
master: `String` representation of the TensorFlow master to use.
config: `ConfigProto` proto used to configure the session.
checkpoint_dir: A string. Optional path to a directory where to restore
variables.
stop_grace_period_secs: Number of seconds given to threads to stop after
`close()` has been called.
checkpoint_filename_with_path: A string. Optional path to a checkpoint
file from which to restore variables.
"""
session_creator = ChiefSessionCreator(
scaffold=scaffold,
master=master,
config=config,
checkpoint_dir=checkpoint_dir,
checkpoint_filename_with_path=checkpoint_filename_with_path)
super(SingularMonitoredSession, self).__init__(
session_creator,
hooks,
should_recover=False,
stop_grace_period_secs=stop_grace_period_secs)
def raw_session(self):
"""Returns underlying `TensorFlow.Session` object."""
return self._tf_sess()
class _WrappedSession:
"""Wrapper around a `tf.compat.v1.Session`.
This wrapper is used as a base class for various session wrappers
that provide additional functionality such as monitoring, coordination,
and recovery.
In addition to the methods exported by `SessionInterface` the wrapper
provides a method to check for stop and never raises exceptions from
calls to `close()`.
"""
def __init__(self, sess):
"""Creates a `_WrappedSession`.
Args:
sess: A `tf.compat.v1.Session` or `_WrappedSession` object. The wrapped
session.
"""
self._sess = sess
self._wrapped_is_stoppable = isinstance(self._sess, _WrappedSession)
@property
def graph(self):
return self._sess.graph
@property
def sess_str(self):
return self._sess.sess_str
def should_stop(self):
"""Return true if this session should not be used anymore.
Always return True if the session was closed.
Returns:
True if the session should stop, False otherwise.
"""
if self._check_stop():
return True
if self._sess:
return self._wrapped_is_stoppable and self._sess.should_stop()
return True
def _check_stop(self):
"""Hook for subclasses to provide their own stop condition.
Returns:
True if the session should stop, False otherwise.
"""
return False
def close(self):
if self._sess:
try:
self._sess.close()
except _PREEMPTION_ERRORS as e:
logging.error(
'An error occurred when attempting to close the '
'session. This may be due to a preemption in a '
'connected worker or parameter server. Error: %s', e)
finally:
self._sess = None
def run(self, *args, **kwargs):
return self._sess.run(*args, **kwargs)
def run_step_fn(self, step_fn, raw_session, run_with_hooks):
# `_RecoverableSession` sets `run_with_hooks` to `_CoordinatedSession.run`.
# It is `None` when called from `_CoordinatedSession`. In that case
# `self.run` is `_CoordinatedSession.run`.
run_with_hooks = run_with_hooks or self.run
return step_fn(_MonitoredSession.StepContext(raw_session, run_with_hooks))
class _RecoverableSession(_WrappedSession):
"""A wrapped session that recreates a session upon certain kinds of errors.
The constructor is passed a SessionCreator object, not a session.
Calls to `run()` are delegated to the wrapped session. If a call raises the
exception `tf.errors.AbortedError` or `tf.errors.UnavailableError`, the
wrapped session is closed, and a new one is created by calling the factory
again.
"""
def __init__(self, sess_creator):
"""Create a new `_RecoverableSession`.
The value returned by calling `sess_creator.create_session()` will be the
session wrapped by this recoverable session.
Args:
sess_creator: A 'SessionCreator' to be wrapped by recoverable.
"""
self._sess_creator = sess_creator
_WrappedSession.__init__(self, self._create_session())
def _create_session(self):
while True:
try:
return self._sess_creator.create_session()
except _PREEMPTION_ERRORS as e:
logging.info(
'An error was raised while a session was being created. '
'This may be due to a preemption of a connected worker '
'or parameter server. A new session will be created. '
'This error may also occur due to a gRPC failure caused '
'by high memory or network bandwidth usage in the '
'parameter servers. If this error occurs repeatedly, try '
'increasing the number of parameter servers assigned to '
'the job. Error: %s', e)
def _check_stop(self):
try:
if self._sess:
return self._sess._check_stop() # pylint: disable=protected-access
else:
return True
except _PREEMPTION_ERRORS as e:
logging.info(
'An error was raised while considering whether the '
'session is complete. This may be due to a preemption in '
'a connected worker or parameter server. The current '
'session will be closed and a new session will be '
'created. This error may also occur due to a gRPC failure '
'caused by high memory or network bandwidth usage in the '
'parameter servers. If this error occurs repeatedly, try '
'increasing the number of parameter servers assigned to '
'the job. Error: %s', e)
self.close()
self._sess = self._create_session()
# Since we have just recreated the session, the overall computation should
# not stop:
return False
except Exception: # pylint: disable=broad-except
# `should_stop` should return True instead of raising an exception.
return True
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
while True:
try:
if not self._sess:
self._sess = self._create_session()
return self._sess.run(
fetches,
feed_dict=feed_dict,
options=options,
run_metadata=run_metadata)
except _PREEMPTION_ERRORS as e:
logging.info(
'An error was raised. This may be due to a preemption in '
'a connected worker or parameter server. The current '
'session will be closed and a new session will be '
'created. This error may also occur due to a gRPC failure '
'caused by high memory or network bandwidth usage in the '
'parameter servers. If this error occurs repeatedly, try '
'increasing the number of parameter servers assigned to '
'the job. Error: %s', e)
self.close()
self._sess = None
def run_step_fn(self, step_fn, raw_session, run_with_hooks):
while True:
try:
if not self._sess:
self._sess = self._create_session()
run_with_hooks = self._sess.run
return self._sess.run_step_fn(step_fn, raw_session, run_with_hooks)
except _PREEMPTION_ERRORS as e:
logging.info(
'An error was raised. This may be due to a preemption in '
'a connected worker or parameter server. The current '
'session will be closed and a new session will be '
'created. This error may also occur due to a gRPC failure '
'caused by high memory or network bandwidth usage in the '
'parameter servers. If this error occurs repeatedly, try '
'increasing the number of parameter servers assigned to '
'the job. Error: %s', e)
self.close()
self._sess = None
class _CoordinatedSession(_WrappedSession):
"""A wrapped session that works with a `tf.Coordinator`.
Calls to `run()` are delegated to the wrapped session. If a call
raises an exception, the exception is reported to the coordinator.
In addition, after each call to `run()` this session ask the coordinator if
the session should stop. In that case it will join all the threads
registered with the coordinator before returning.
If the coordinator was requested to stop with an exception, that exception
will be re-raised from the call to `run()`.
"""
def __init__(self, sess, coord, stop_grace_period_secs=120):
"""Create a new `_CoordinatedSession`.
Args:
sess: A `tf.compat.v1.Session` object. The wrapped session.
coord: A `tf.train.Coordinator` object.
stop_grace_period_secs: Number of seconds given to threads to stop after
`close()` has been called.
"""
_WrappedSession.__init__(self, sess)
self._coord = coord
self._stop_grace_period_secs = stop_grace_period_secs
def _check_stop(self):
# If the coordinator was asked to stop due to an exception, then it needs
# to be propagated to this stack.
self._coord.raise_requested_exception()
# At this point, no exceptions are recorded in the coordinator.
return self._coord.should_stop()
def close(self):
self._coord.request_stop()
try:
self._coord.join(
stop_grace_period_secs=self._stop_grace_period_secs,
ignore_live_threads=True)
finally:
try:
_WrappedSession.close(self)
except Exception: # pylint: disable=broad-except
# We intentionally suppress exceptions from the close() here since
# useful exceptions are already reported by join().
pass
def run(self, *args, **kwargs):
try:
return self._sess.run(*args, **kwargs)
except _PREEMPTION_ERRORS:
raise
except Exception as original_exception: # pylint: disable=broad-except
# A non-preemption error could have been caused by a preemption error
# in the coordinator. If this is the case, raise that exception instead,
# since it's the root cause. Otherwise, stick to the `original_exception`.
try:
self._coord.raise_requested_exception()
except _PREEMPTION_ERRORS:
raise
except Exception: # pylint: disable=broad-except
raise original_exception from None
else:
raise
class _HookedSession(_WrappedSession):
"""A _WrappedSession that calls hooks during calls to run().
The list of hooks to call is passed in the constructor. Before each call
to `run()` the session calls the `before_run()` method of the hooks, which
can return additional ops or tensors to run. These are added to the arguments
of the call to `run()`.
When the `run()` call finishes, the session calls the `after_run()` methods of
the hooks, passing the values returned by the `run()` call corresponding to
the ops and tensors that each hook requested.
If any call to the hooks, requests stop via run_context the session will be
marked as needing to stop and its `should_stop()` method will now return
`True`.
"""
def __init__(self, sess, hooks):
"""Initializes a _HookedSession object.
Args:
sess: A `tf.compat.v1.Session` or a `_WrappedSession` object.
hooks: An iterable of `SessionRunHook' objects.
"""
_WrappedSession.__init__(self, sess)
self._hooks = hooks
self._should_stop = False
def _check_stop(self):
"""See base class."""
return self._should_stop
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
"""See base class."""
if self.should_stop():
raise RuntimeError('Run called even after should_stop requested.')
actual_fetches = {'caller': fetches}
run_context = session_run_hook.SessionRunContext(
original_args=session_run_hook.SessionRunArgs(fetches, feed_dict),
session=self._sess)
options = options or config_pb2.RunOptions()
feed_dict = self._call_hook_before_run(run_context, actual_fetches,
feed_dict, options)
# Do session run.
run_metadata = run_metadata or config_pb2.RunMetadata()
outputs = _WrappedSession.run(
self,
fetches=actual_fetches,
feed_dict=feed_dict,
options=options,
run_metadata=run_metadata)
for hook in self._hooks:
hook.after_run(
run_context,
session_run_hook.SessionRunValues(
results=outputs[hook] if hook in outputs else None,
options=options,
run_metadata=run_metadata))
self._should_stop = self._should_stop or run_context.stop_requested
return outputs['caller']
def _call_hook_before_run(self, run_context, fetch_dict, user_feed_dict,
options):
"""Calls hooks.before_run and handles requests from hooks."""
hook_feeds = {}
for hook in self._hooks:
request = hook.before_run(run_context)
if request is not None:
if request.fetches is not None:
fetch_dict[hook] = request.fetches
if request.feed_dict:
self._raise_if_feeds_intersects(hook_feeds, request.feed_dict,
'Same tensor is fed by two hooks.')
hook_feeds.update(request.feed_dict)
if request.options:
self._merge_run_options(options, request.options)
if not hook_feeds:
return user_feed_dict
if not user_feed_dict:
return hook_feeds
self._raise_if_feeds_intersects(
user_feed_dict, hook_feeds,
'Same tensor is fed by a SessionRunHook and user.')
hook_feeds.update(user_feed_dict)
return hook_feeds
def _raise_if_feeds_intersects(self, feeds1, feeds2, message):
intersection = set(feeds1.keys()) & set(feeds2.keys())
if intersection:
raise RuntimeError(message + ' Conflict(s): ' + str(list(intersection)))
def _merge_run_options(self, options, incoming_options):
"""Merge two instances of RunOptions into the first one.
During the merger, the numerical fields including trace_level,
timeout_in_ms, inter_op_thread_pool are set to the larger one of the two.
The boolean value is set to the logical OR of the two.
debug_tensor_watch_opts of the original options is extended with that from
the incoming one.
Args:
options: The options to merge into.
incoming_options: The options to be merged into the first argument.
"""
options.trace_level = max(options.trace_level, incoming_options.trace_level)
options.timeout_in_ms = max(options.timeout_in_ms,
incoming_options.timeout_in_ms)
options.inter_op_thread_pool = max(options.inter_op_thread_pool,
incoming_options.inter_op_thread_pool)
options.output_partition_graphs = max(
options.output_partition_graphs,
incoming_options.output_partition_graphs)
options.debug_options.debug_tensor_watch_opts.extend(
incoming_options.debug_options.debug_tensor_watch_opts)
options.debug_options.reset_disk_byte_usage = (
options.debug_options.reset_disk_byte_usage or
incoming_options.debug_options.reset_disk_byte_usage)
options.report_tensor_allocations_upon_oom = (
options.report_tensor_allocations_upon_oom or
incoming_options.report_tensor_allocations_upon_oom)