3RNN/Lib/site-packages/tensorflow/python/training/rmsprop.py
2024-05-26 19:49:15 +02:00

324 lines
12 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""One-line documentation for rmsprop module.
rmsprop algorithm [tieleman2012rmsprop]
A detailed description of rmsprop.
- maintain a moving (discounted) average of the square of gradients
- divide gradient by the root of this average
mean_square = decay * mean_square{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t / sqrt(mean_square + epsilon)
delta = - mom
This implementation of RMSProp uses plain momentum, not Nesterov momentum.
The centered version additionally maintains a moving (discounted) average of the
gradients, and uses that average to estimate the variance:
mean_grad = decay * mean_grad{t-1} + (1-decay) * gradient
mean_square = decay * mean_square{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t /
sqrt(mean_square - mean_grad**2 + epsilon)
delta = - mom
"""
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_training_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.training import optimizer
from tensorflow.python.util.tf_export import tf_export
@tf_export(v1=["train.RMSPropOptimizer"])
class RMSPropOptimizer(optimizer.Optimizer):
"""Optimizer that implements the RMSProp algorithm (Tielemans et al.
2012).
References:
Coursera slide 29:
Hinton, 2012
([pdf](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf))
@compatibility(TF2)
tf.compat.v1.train.RMSPropOptimizer is compatible with eager mode and
`tf.function`.
When eager execution is enabled, `learning_rate`, `decay`, `momentum`,
and `epsilon` can each be a callable that
takes no arguments and returns the actual value to use. This can be useful
for changing these values across different invocations of optimizer
functions.
To switch to native TF2 style, use [`tf.keras.optimizers.RMSprop`]
(https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop)
instead. Please notice that due to the implementation differences,
`tf.keras.optimizers.RMSprop` and
`tf.compat.v1.train.RMSPropOptimizer` may have slight differences in
floating point numerics even though the formula used for the variable
updates still matches.
#### Structural mapping to native TF2
Before:
```python
optimizer = tf.compat.v1.train.RMSPropOptimizer(
learning_rate=learning_rate,
decay=decay,
momentum=momentum,
epsilon=epsilon)
```
After:
```python
optimizer = tf.keras.optimizers.RMSprop(
learning_rate=learning_rate,
rho=decay,
momentum=momentum,
epsilon=epsilon)
```
#### How to map arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| ------------------ | ------------- | ------------------------------- |
| `learning_rate` | `learning_rate`| Be careful of setting |
: : : learning_rate tensor value computed from the global step. :
: : : In TF1 this was usually meant to imply a dynamic learning rate and :
: : : would recompute in each step. In TF2 (eager + function) it will :
: : : treat it as a scalar value that only gets computed once instead of :
: : : a symbolic placeholder to be computed each time. :
| `decay` | `rho` | - |
| `momentum` | `momentum` | - |
| `epsilon` | `epsilon` | Default value is 1e-10 in TF1, |
: : : but 1e-07 in TF2. :
| `use_locking` | - | Not applicable in TF2. |
#### Before & after usage example
Before:
```python
x = tf.Variable([1,2,3], dtype=tf.float32)
grad = tf.constant([0.1, 0.2, 0.3])
optimizer = tf.compat.v1.train.RMSPropOptimizer(learning_rate=0.001)
optimizer.apply_gradients(zip([grad], [x]))
```
After:
```python
x = tf.Variable([1,2,3], dtype=tf.float32)
grad = tf.constant([0.1, 0.2, 0.3])
optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001)
optimizer.apply_gradients(zip([grad], [x]))
```
@end_compatibility
"""
def __init__(self,
learning_rate,
decay=0.9,
momentum=0.0,
epsilon=1e-10,
use_locking=False,
centered=False,
name="RMSProp"):
"""Construct a new RMSProp optimizer.
Note that in the dense implementation of this algorithm, variables and their
corresponding accumulators (momentum, gradient moving average, square
gradient moving average) will be updated even if the gradient is zero
(i.e. accumulators will decay, momentum will be applied). The sparse
implementation (used when the gradient is an `IndexedSlices` object,
typically because of `tf.gather` or an embedding lookup in the forward pass)
will not update variable slices or their accumulators unless those slices
were used in the forward pass (nor is there an "eventual" correction to
account for these omitted updates). This leads to more efficient updates for
large embedding lookup tables (where most of the slices are not accessed in
a particular graph execution), but differs from the published algorithm.
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
decay: Discounting factor for the history/coming gradient
momentum: A scalar tensor.
epsilon: Small value to avoid zero denominator.
use_locking: If True use locks for update operation.
centered: If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "RMSProp".
"""
super(RMSPropOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
self._decay = decay
self._momentum = momentum
self._epsilon = epsilon
self._centered = centered
# Tensors for learning rate and momentum. Created in _prepare.
self._learning_rate_tensor = None
self._decay_tensor = None
self._momentum_tensor = None
self._epsilon_tensor = None
def _create_slots(self, var_list):
for v in var_list:
if v.get_shape().is_fully_defined():
init_rms = init_ops.ones_initializer(dtype=v.dtype.base_dtype)
else:
init_rms = array_ops.ones_like(v)
self._get_or_make_slot_with_initializer(v, init_rms, v.get_shape(),
v.dtype.base_dtype, "rms",
self._name)
if self._centered:
self._zeros_slot(v, "mg", self._name)
self._zeros_slot(v, "momentum", self._name)
def _prepare(self):
lr = self._call_if_callable(self._learning_rate)
decay = self._call_if_callable(self._decay)
momentum = self._call_if_callable(self._momentum)
epsilon = self._call_if_callable(self._epsilon)
self._learning_rate_tensor = ops.convert_to_tensor(lr, name="learning_rate")
self._decay_tensor = ops.convert_to_tensor(decay, name="decay")
self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum")
self._epsilon_tensor = ops.convert_to_tensor(epsilon, name="epsilon")
def _apply_dense(self, grad, var):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return gen_training_ops.apply_centered_rms_prop(
var,
mg,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad,
use_locking=self._use_locking).op
else:
return gen_training_ops.apply_rms_prop(
var,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad,
use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, var):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return gen_training_ops.resource_apply_centered_rms_prop(
var.handle,
mg.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
math_ops.cast(self._decay_tensor, grad.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, grad.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype.base_dtype),
grad,
use_locking=self._use_locking)
else:
return gen_training_ops.resource_apply_rms_prop(
var.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
math_ops.cast(self._decay_tensor, grad.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, grad.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype.base_dtype),
grad,
use_locking=self._use_locking)
def _apply_sparse(self, grad, var):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return gen_training_ops.sparse_apply_centered_rms_prop(
var,
mg,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad.values,
grad.indices,
use_locking=self._use_locking)
else:
return gen_training_ops.sparse_apply_rms_prop(
var,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad.values,
grad.indices,
use_locking=self._use_locking)
def _resource_apply_sparse(self, grad, var, indices):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return gen_training_ops.resource_sparse_apply_centered_rms_prop(
var.handle,
mg.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
math_ops.cast(self._decay_tensor, grad.dtype),
math_ops.cast(self._momentum_tensor, grad.dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype),
grad,
indices,
use_locking=self._use_locking)
else:
return gen_training_ops.resource_sparse_apply_rms_prop(
var.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
math_ops.cast(self._decay_tensor, grad.dtype),
math_ops.cast(self._momentum_tensor, grad.dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype),
grad,
indices,
use_locking=self._use_locking)