3RNN/Lib/site-packages/tensorflow/python/util/lazy_loader.py
2024-05-26 19:49:15 +02:00

225 lines
7.6 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A LazyLoader class."""
import importlib
import os
import types
from tensorflow.python.platform import tf_logging as logging
_TENSORFLOW_LAZY_LOADER_PREFIX = "_tfll"
class LazyLoader(types.ModuleType):
"""Lazily import a module, mainly to avoid pulling in large dependencies.
`contrib`, and `ffmpeg` are examples of modules that are large and not always
needed, and this allows them to only be loaded when they are used.
"""
# The lint error here is incorrect.
def __init__(self, local_name, parent_module_globals, name, warning=None):
self._tfll_local_name = local_name
self._tfll_parent_module_globals = parent_module_globals
self._tfll_warning = warning
# These members allows doctest correctly process this module member without
# triggering self._load(). self._load() mutates parant_module_globals and
# triggers a dict mutated during iteration error from doctest.py.
# - for from_module()
super().__setattr__("__module__", name.rsplit(".", 1)[0])
# - for is_routine()
super().__setattr__("__wrapped__", None)
super().__init__(name)
def _load(self):
"""Load the module and insert it into the parent's globals."""
# Import the target module and insert it into the parent's namespace
module = importlib.import_module(self.__name__)
self._tfll_parent_module_globals[self._tfll_local_name] = module
# Emit a warning if one was specified
if self._tfll_warning:
logging.warning(self._tfll_warning)
# Make sure to only warn once.
self._tfll_warning = None
# Update this object's dict so that if someone keeps a reference to the
# LazyLoader, lookups are efficient (__getattr__ is only called on lookups
# that fail).
self.__dict__.update(module.__dict__)
return module
def __getattr__(self, name):
module = self._load()
return getattr(module, name)
def __setattr__(self, name, value):
if name.startswith(_TENSORFLOW_LAZY_LOADER_PREFIX):
super().__setattr__(name, value)
else:
module = self._load()
setattr(module, name, value)
self.__dict__[name] = value
try:
# check if the module has __all__
if name not in self.__all__ and name != "__all__":
self.__all__.append(name)
except AttributeError:
pass
def __delattr__(self, name):
if name.startswith(_TENSORFLOW_LAZY_LOADER_PREFIX):
super().__delattr__(name)
else:
module = self._load()
delattr(module, name)
self.__dict__.pop(name)
try:
# check if the module has __all__
if name in self.__all__:
self.__all__.remove(name)
except AttributeError:
pass
def __repr__(self):
# Carefully to not trigger _load, since repr may be called in very
# sensitive places.
return f"<LazyLoader {self.__name__} as {self._tfll_local_name}>"
def __dir__(self):
module = self._load()
return dir(module)
def __reduce__(self):
return importlib.import_module, (self.__name__,)
class KerasLazyLoader(LazyLoader):
"""LazyLoader that handles routing to different Keras version."""
def __init__( # pylint: disable=super-init-not-called
self, parent_module_globals, mode=None, submodule=None, name="keras"):
self._tfll_parent_module_globals = parent_module_globals
self._tfll_mode = mode
self._tfll_submodule = submodule
self._tfll_name = name
self._tfll_initialized = False
def _initialize(self):
"""Resolve the Keras version to use and initialize the loader."""
self._tfll_initialized = True
package_name = None
keras_version = None
if os.environ.get("TF_USE_LEGACY_KERAS", None) in ("true", "True", "1"):
try:
import tf_keras # pylint: disable=g-import-not-at-top,unused-import
keras_version = "tf_keras"
if self._tfll_mode == "v1":
package_name = "tf_keras.api._v1.keras"
else:
package_name = "tf_keras.api._v2.keras"
except ImportError:
logging.warning(
"Your environment has TF_USE_LEGACY_KERAS set to True, but you "
"do not have the tf_keras package installed. You must install it "
"in order to use the legacy tf.keras. Install it via: "
"`pip install tf_keras`"
)
else:
try:
import keras # pylint: disable=g-import-not-at-top
if keras.__version__.startswith("3."):
# This is the Keras 3.x case.
keras_version = "keras_3"
package_name = "keras._tf_keras.keras"
else:
# This is the Keras 2.x case.
keras_version = "keras_2"
if self._tfll_mode == "v1":
package_name = "keras.api._v1.keras"
else:
package_name = "keras.api._v2.keras"
except ImportError:
raise ImportError( # pylint: disable=raise-missing-from
"Keras cannot be imported. Check that it is installed."
)
self._tfll_keras_version = keras_version
if keras_version is not None:
if self._tfll_submodule is not None:
package_name += "." + self._tfll_submodule
super().__init__(
self._tfll_name, self._tfll_parent_module_globals, package_name
)
else:
raise ImportError( # pylint: disable=raise-missing-from
"Keras cannot be imported. Check that it is installed."
)
def __getattr__(self, item):
if item in ("_tfll_mode", "_tfll_initialized", "_tfll_name"):
return super(types.ModuleType, self).__getattribute__(item)
if not self._tfll_initialized:
self._initialize()
if self._tfll_keras_version == "keras_3":
if (
self._tfll_mode == "v1"
and not self._tfll_submodule
and item.startswith("compat.v1.")
):
raise AttributeError(
"`tf.compat.v1.keras` is not available with Keras 3. Keras 3 has "
"no support for TF 1 APIs. You can install the `tf_keras` package "
"as an alternative, and set the environment variable "
"`TF_USE_LEGACY_KERAS=True` to configure TensorFlow to route "
"`tf.compat.v1.keras` to `tf_keras`."
)
elif (
self._tfll_mode == "v2"
and not self._tfll_submodule
and item.startswith("compat.v2.")
):
raise AttributeError(
"`tf.compat.v2.keras` is not available with Keras 3. Just use "
"`import keras` instead."
)
elif self._tfll_submodule and self._tfll_submodule.startswith(
"__internal__.legacy."
):
raise AttributeError(
f"`{item}` is not available with Keras 3."
)
module = self._load()
return getattr(module, item)
def __repr__(self):
if self._tfll_initialized:
return (
f"<KerasLazyLoader ({self._tfll_keras_version}) "
f"{self.__name__} as {self._tfll_local_name} mode={self._tfll_mode}>"
)
return "<KerasLazyLoader>"
def __dir__(self):
if not self._tfll_initialized:
self._initialize()
return super().__dir__()