Projekt
This commit is contained in:
parent
b0a7744214
commit
134b585d49
102
main.py
Normal file
102
main.py
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from datasets import load_dataset, load_metric
|
||||||
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer, DataCollatorForTokenClassification
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Load the CoNLL-2003 dataset with trust_remote_code
|
||||||
|
dataset = load_dataset("conll2003", trust_remote_code=True)
|
||||||
|
|
||||||
|
# Load the tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
||||||
|
|
||||||
|
# Define label list and map labels to IDs
|
||||||
|
label_list = dataset['train'].features['ner_tags'].feature.names
|
||||||
|
|
||||||
|
# Tokenize and align labels function
|
||||||
|
def tokenize_and_align_labels(examples):
|
||||||
|
tokenized_inputs = tokenizer(examples['tokens'], truncation=True, padding='max_length', is_split_into_words=True)
|
||||||
|
labels = []
|
||||||
|
for i, label in enumerate(examples['ner_tags']):
|
||||||
|
word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word.
|
||||||
|
previous_word_idx = None
|
||||||
|
label_ids = []
|
||||||
|
for word_idx in word_ids: # Set the special tokens to -100.
|
||||||
|
if word_idx is None:
|
||||||
|
label_ids.append(-100)
|
||||||
|
elif word_idx != previous_word_idx: # Only label the first token of a given word.
|
||||||
|
label_ids.append(label[word_idx])
|
||||||
|
else:
|
||||||
|
label_ids.append(-100)
|
||||||
|
previous_word_idx = word_idx
|
||||||
|
labels.append(label_ids)
|
||||||
|
tokenized_inputs["labels"] = labels
|
||||||
|
return tokenized_inputs
|
||||||
|
|
||||||
|
# Tokenize the datasets
|
||||||
|
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=True)
|
||||||
|
|
||||||
|
# Split the dataset into training and evaluation sets
|
||||||
|
train_dataset = tokenized_datasets["train"]
|
||||||
|
eval_dataset = tokenized_datasets["validation"]
|
||||||
|
|
||||||
|
# Load the model
|
||||||
|
model = AutoModelForTokenClassification.from_pretrained("bert-base-cased", num_labels=len(label_list))
|
||||||
|
|
||||||
|
# Data collator for token classification
|
||||||
|
data_collator = DataCollatorForTokenClassification(tokenizer)
|
||||||
|
|
||||||
|
# Training arguments
|
||||||
|
training_args = TrainingArguments(
|
||||||
|
output_dir='./results',
|
||||||
|
evaluation_strategy="epoch",
|
||||||
|
learning_rate=2e-5,
|
||||||
|
per_device_train_batch_size=16,
|
||||||
|
per_device_eval_batch_size=16,
|
||||||
|
num_train_epochs=3,
|
||||||
|
weight_decay=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Define the trainer
|
||||||
|
trainer = Trainer(
|
||||||
|
model=model,
|
||||||
|
args=training_args,
|
||||||
|
train_dataset=train_dataset,
|
||||||
|
eval_dataset=eval_dataset,
|
||||||
|
data_collator=data_collator,
|
||||||
|
compute_metrics=lambda p: {
|
||||||
|
"accuracy": (p.predictions.argmax(-1) == p.label_ids).astype(np.float32).mean().item(),
|
||||||
|
"f1": load_metric("seqeval").compute(predictions=np.argmax(p.predictions, axis=2), references=p.label_ids)['overall_f1']
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Train the model
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# Evaluate the model
|
||||||
|
results = trainer.evaluate()
|
||||||
|
|
||||||
|
# Print the results
|
||||||
|
print("Evaluation results:", results)
|
||||||
|
|
||||||
|
# Predict on the evaluation set
|
||||||
|
predictions, labels, _ = trainer.predict(eval_dataset)
|
||||||
|
predictions = np.argmax(predictions, axis=2)
|
||||||
|
|
||||||
|
# Convert the predictions and labels to the original tags
|
||||||
|
true_labels = [[label_list[l] for l in label if l != -100] for label in labels]
|
||||||
|
true_predictions = [
|
||||||
|
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
|
||||||
|
for prediction, label in zip(predictions, labels)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Create a DataFrame for the results
|
||||||
|
results_df = pd.DataFrame({
|
||||||
|
'tokens': eval_dataset['tokens'],
|
||||||
|
'true_labels': true_labels,
|
||||||
|
'predicted_labels': true_predictions
|
||||||
|
})
|
||||||
|
|
||||||
|
# Save the results to a CSV file
|
||||||
|
results_df.to_csv('mnt/data/ner_results.csv', index=False)
|
||||||
|
|
||||||
|
print("Wyniki analizy NER zostały zapisane do pliku 'mnt/data/ner_results.csv'.")
|
3251
mnt/data/ner_results.csv
Normal file
3251
mnt/data/ner_results.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user