84 lines
2.8 KiB
Python
84 lines
2.8 KiB
Python
import pandas as pd
|
|
from datasets import load_dataset, load_metric
|
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer, DataCollatorForTokenClassification
|
|
import numpy as np
|
|
|
|
dataset = load_dataset("conll2003", trust_remote_code=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
|
|
|
label_list = dataset['train'].features['ner_tags'].feature.names
|
|
|
|
def tokenize_and_align_labels(examples):
|
|
tokenized_inputs = tokenizer(examples['tokens'], truncation=True, padding='max_length', is_split_into_words=True)
|
|
labels = []
|
|
for i, label in enumerate(examples['ner_tags']):
|
|
word_ids = tokenized_inputs.word_ids(batch_index=i)
|
|
previous_word_idx = None
|
|
label_ids = []
|
|
for word_idx in word_ids:
|
|
if word_idx is None:
|
|
label_ids.append(-100)
|
|
elif word_idx != previous_word_idx:
|
|
label_ids.append(label[word_idx])
|
|
else:
|
|
label_ids.append(-100)
|
|
previous_word_idx = word_idx
|
|
labels.append(label_ids)
|
|
tokenized_inputs["labels"] = labels
|
|
return tokenized_inputs
|
|
|
|
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=True)
|
|
|
|
train_dataset = tokenized_datasets["train"]
|
|
eval_dataset = tokenized_datasets["validation"]
|
|
|
|
model = AutoModelForTokenClassification.from_pretrained("bert-base-cased", num_labels=len(label_list))
|
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer)
|
|
|
|
training_args = TrainingArguments(
|
|
output_dir='./results',
|
|
evaluation_strategy="epoch",
|
|
learning_rate=2e-5,
|
|
per_device_train_batch_size=16,
|
|
per_device_eval_batch_size=16,
|
|
num_train_epochs=3,
|
|
weight_decay=0.01,
|
|
)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
data_collator=data_collator,
|
|
compute_metrics=lambda p: {
|
|
"accuracy": (p.predictions.argmax(-1) == p.label_ids).astype(np.float32).mean().item(),
|
|
"f1": load_metric("seqeval").compute(predictions=np.argmax(p.predictions, axis=2), references=p.label_ids)['overall_f1']
|
|
},
|
|
)
|
|
|
|
trainer.train()
|
|
results = trainer.evaluate()
|
|
|
|
print("Evaluation results:", results)
|
|
|
|
predictions, labels, _ = trainer.predict(eval_dataset)
|
|
predictions = np.argmax(predictions, axis=2)
|
|
|
|
true_labels = [[label_list[l] for l in label if l != -100] for label in labels]
|
|
true_predictions = [
|
|
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
|
|
for prediction, label in zip(predictions, labels)
|
|
]
|
|
|
|
results_df = pd.DataFrame({
|
|
'tokens': eval_dataset['tokens'],
|
|
'true_labels': true_labels,
|
|
'predicted_labels': true_predictions
|
|
})
|
|
|
|
results_df.to_csv('mnt/data/ner_results.csv', index=False)
|
|
|
|
print("Wyniki analizy NER zostały zapisane do pliku 'mnt/data/ner_results.csv'.") |