Inzynierka/Lib/site-packages/pandas/core/groupby/indexing.py

304 lines
9.3 KiB
Python
Raw Permalink Normal View History

2023-06-02 12:51:02 +02:00
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Iterable,
Literal,
cast,
)
import numpy as np
from pandas._typing import PositionalIndexer
from pandas.util._decorators import (
cache_readonly,
doc,
)
from pandas.core.dtypes.common import (
is_integer,
is_list_like,
)
if TYPE_CHECKING:
from pandas import (
DataFrame,
Series,
)
from pandas.core.groupby import groupby
class GroupByIndexingMixin:
"""
Mixin for adding ._positional_selector to GroupBy.
"""
@cache_readonly
def _positional_selector(self) -> GroupByPositionalSelector:
"""
Return positional selection for each group.
``groupby._positional_selector[i:j]`` is similar to
``groupby.apply(lambda x: x.iloc[i:j])``
but much faster and preserves the original index and order.
``_positional_selector[]`` is compatible with and extends :meth:`~GroupBy.head`
and :meth:`~GroupBy.tail`. For example:
- ``head(5)``
- ``_positional_selector[5:-5]``
- ``tail(5)``
together return all the rows.
Allowed inputs for the index are:
- An integer valued iterable, e.g. ``range(2, 4)``.
- A comma separated list of integers and slices, e.g. ``5``, ``2, 4``, ``2:4``.
The output format is the same as :meth:`~GroupBy.head` and
:meth:`~GroupBy.tail`, namely
a subset of the ``DataFrame`` or ``Series`` with the index and order preserved.
Returns
-------
Series
The filtered subset of the original Series.
DataFrame
The filtered subset of the original DataFrame.
See Also
--------
DataFrame.iloc : Purely integer-location based indexing for selection by
position.
GroupBy.head : Return first n rows of each group.
GroupBy.tail : Return last n rows of each group.
GroupBy.nth : Take the nth row from each group if n is an int, or a
subset of rows, if n is a list of ints.
Notes
-----
- The slice step cannot be negative.
- If the index specification results in overlaps, the item is not duplicated.
- If the index specification changes the order of items, then
they are returned in their original order.
By contrast, ``DataFrame.iloc`` can change the row order.
- ``groupby()`` parameters such as as_index and dropna are ignored.
The differences between ``_positional_selector[]`` and :meth:`~GroupBy.nth`
with ``as_index=False`` are:
- Input to ``_positional_selector`` can include
one or more slices whereas ``nth``
just handles an integer or a list of integers.
- ``_positional_selector`` can accept a slice relative to the
last row of each group.
- ``_positional_selector`` does not have an equivalent to the
``nth()`` ``dropna`` parameter.
Examples
--------
>>> df = pd.DataFrame([["a", 1], ["a", 2], ["a", 3], ["b", 4], ["b", 5]],
... columns=["A", "B"])
>>> df.groupby("A")._positional_selector[1:2]
A B
1 a 2
4 b 5
>>> df.groupby("A")._positional_selector[1, -1]
A B
1 a 2
2 a 3
4 b 5
"""
if TYPE_CHECKING:
# pylint: disable-next=used-before-assignment
groupby_self = cast(groupby.GroupBy, self)
else:
groupby_self = self
return GroupByPositionalSelector(groupby_self)
def _make_mask_from_positional_indexer(
self,
arg: PositionalIndexer | tuple,
) -> np.ndarray:
if is_list_like(arg):
if all(is_integer(i) for i in cast(Iterable, arg)):
mask = self._make_mask_from_list(cast(Iterable[int], arg))
else:
mask = self._make_mask_from_tuple(cast(tuple, arg))
elif isinstance(arg, slice):
mask = self._make_mask_from_slice(arg)
elif is_integer(arg):
mask = self._make_mask_from_int(cast(int, arg))
else:
raise TypeError(
f"Invalid index {type(arg)}. "
"Must be integer, list-like, slice or a tuple of "
"integers and slices"
)
if isinstance(mask, bool):
if mask:
mask = self._ascending_count >= 0
else:
mask = self._ascending_count < 0
return cast(np.ndarray, mask)
def _make_mask_from_int(self, arg: int) -> np.ndarray:
if arg >= 0:
return self._ascending_count == arg
else:
return self._descending_count == (-arg - 1)
def _make_mask_from_list(self, args: Iterable[int]) -> bool | np.ndarray:
positive = [arg for arg in args if arg >= 0]
negative = [-arg - 1 for arg in args if arg < 0]
mask: bool | np.ndarray = False
if positive:
mask |= np.isin(self._ascending_count, positive)
if negative:
mask |= np.isin(self._descending_count, negative)
return mask
def _make_mask_from_tuple(self, args: tuple) -> bool | np.ndarray:
mask: bool | np.ndarray = False
for arg in args:
if is_integer(arg):
mask |= self._make_mask_from_int(cast(int, arg))
elif isinstance(arg, slice):
mask |= self._make_mask_from_slice(arg)
else:
raise ValueError(
f"Invalid argument {type(arg)}. Should be int or slice."
)
return mask
def _make_mask_from_slice(self, arg: slice) -> bool | np.ndarray:
start = arg.start
stop = arg.stop
step = arg.step
if step is not None and step < 0:
raise ValueError(f"Invalid step {step}. Must be non-negative")
mask: bool | np.ndarray = True
if step is None:
step = 1
if start is None:
if step > 1:
mask &= self._ascending_count % step == 0
elif start >= 0:
mask &= self._ascending_count >= start
if step > 1:
mask &= (self._ascending_count - start) % step == 0
else:
mask &= self._descending_count < -start
offset_array = self._descending_count + start + 1
limit_array = (
self._ascending_count + self._descending_count + (start + 1)
) < 0
offset_array = np.where(limit_array, self._ascending_count, offset_array)
mask &= offset_array % step == 0
if stop is not None:
if stop >= 0:
mask &= self._ascending_count < stop
else:
mask &= self._descending_count >= -stop
return mask
@cache_readonly
def _ascending_count(self) -> np.ndarray:
if TYPE_CHECKING:
groupby_self = cast(groupby.GroupBy, self)
else:
groupby_self = self
return groupby_self._cumcount_array()
@cache_readonly
def _descending_count(self) -> np.ndarray:
if TYPE_CHECKING:
groupby_self = cast(groupby.GroupBy, self)
else:
groupby_self = self
return groupby_self._cumcount_array(ascending=False)
@doc(GroupByIndexingMixin._positional_selector)
class GroupByPositionalSelector:
def __init__(self, groupby_object: groupby.GroupBy) -> None:
self.groupby_object = groupby_object
def __getitem__(self, arg: PositionalIndexer | tuple) -> DataFrame | Series:
"""
Select by positional index per group.
Implements GroupBy._positional_selector
Parameters
----------
arg : PositionalIndexer | tuple
Allowed values are:
- int
- int valued iterable such as list or range
- slice with step either None or positive
- tuple of integers and slices
Returns
-------
Series
The filtered subset of the original groupby Series.
DataFrame
The filtered subset of the original groupby DataFrame.
See Also
--------
DataFrame.iloc : Integer-location based indexing for selection by position.
GroupBy.head : Return first n rows of each group.
GroupBy.tail : Return last n rows of each group.
GroupBy._positional_selector : Return positional selection for each group.
GroupBy.nth : Take the nth row from each group if n is an int, or a
subset of rows, if n is a list of ints.
"""
mask = self.groupby_object._make_mask_from_positional_indexer(arg)
return self.groupby_object._mask_selected_obj(mask)
class GroupByNthSelector:
"""
Dynamically substituted for GroupBy.nth to enable both call and index
"""
def __init__(self, groupby_object: groupby.GroupBy) -> None:
self.groupby_object = groupby_object
def __call__(
self,
n: PositionalIndexer | tuple,
dropna: Literal["any", "all", None] = None,
) -> DataFrame | Series:
return self.groupby_object._nth(n, dropna)
def __getitem__(self, n: PositionalIndexer | tuple) -> DataFrame | Series:
return self.groupby_object._nth(n)