Inzynierka/Lib/site-packages/pandas/core/interchange/buffer.py

78 lines
2.2 KiB
Python
Raw Permalink Normal View History

2023-06-02 12:51:02 +02:00
from __future__ import annotations
import numpy as np
from pandas.core.interchange.dataframe_protocol import (
Buffer,
DlpackDeviceType,
)
from pandas.util.version import Version
_NUMPY_HAS_DLPACK = Version(np.__version__) >= Version("1.22.0")
class PandasBuffer(Buffer):
"""
Data in the buffer is guaranteed to be contiguous in memory.
"""
def __init__(self, x: np.ndarray, allow_copy: bool = True) -> None:
"""
Handle only regular columns (= numpy arrays) for now.
"""
if not x.strides == (x.dtype.itemsize,):
# The protocol does not support strided buffers, so a copy is
# necessary. If that's not allowed, we need to raise an exception.
if allow_copy:
x = x.copy()
else:
raise RuntimeError(
"Exports cannot be zero-copy in the case "
"of a non-contiguous buffer"
)
# Store the numpy array in which the data resides as a private
# attribute, so we can use it to retrieve the public attributes
self._x = x
@property
def bufsize(self) -> int:
"""
Buffer size in bytes.
"""
return self._x.size * self._x.dtype.itemsize
@property
def ptr(self) -> int:
"""
Pointer to start of the buffer as an integer.
"""
return self._x.__array_interface__["data"][0]
def __dlpack__(self):
"""
Represent this structure as DLPack interface.
"""
if _NUMPY_HAS_DLPACK:
return self._x.__dlpack__()
raise NotImplementedError("__dlpack__")
def __dlpack_device__(self) -> tuple[DlpackDeviceType, int | None]:
"""
Device type and device ID for where the data in the buffer resides.
"""
return (DlpackDeviceType.CPU, None)
def __repr__(self) -> str:
return (
"PandasBuffer("
+ str(
{
"bufsize": self.bufsize,
"ptr": self.ptr,
"device": self.__dlpack_device__()[0].name,
}
)
+ ")"
)