Inzynierka/Lib/site-packages/pandas/core/interchange/dataframe.py

112 lines
3.7 KiB
Python
Raw Permalink Normal View History

2023-06-02 12:51:02 +02:00
from __future__ import annotations
from collections import abc
from typing import TYPE_CHECKING
from pandas.core.interchange.column import PandasColumn
from pandas.core.interchange.dataframe_protocol import DataFrame as DataFrameXchg
if TYPE_CHECKING:
from pandas import (
DataFrame,
Index,
)
class PandasDataFrameXchg(DataFrameXchg):
"""
A data frame class, with only the methods required by the interchange
protocol defined.
Instances of this (private) class are returned from
``pd.DataFrame.__dataframe__`` as objects with the methods and
attributes defined on this class.
"""
def __init__(
self, df: DataFrame, nan_as_null: bool = False, allow_copy: bool = True
) -> None:
"""
Constructor - an instance of this (private) class is returned from
`pd.DataFrame.__dataframe__`.
"""
self._df = df
# ``nan_as_null`` is a keyword intended for the consumer to tell the
# producer to overwrite null values in the data with ``NaN`` (or ``NaT``).
# This currently has no effect; once support for nullable extension
# dtypes is added, this value should be propagated to columns.
self._nan_as_null = nan_as_null
self._allow_copy = allow_copy
def __dataframe__(
self, nan_as_null: bool = False, allow_copy: bool = True
) -> PandasDataFrameXchg:
return PandasDataFrameXchg(self._df, nan_as_null, allow_copy)
@property
def metadata(self) -> dict[str, Index]:
# `index` isn't a regular column, and the protocol doesn't support row
# labels - so we export it as Pandas-specific metadata here.
return {"pandas.index": self._df.index}
def num_columns(self) -> int:
return len(self._df.columns)
def num_rows(self) -> int:
return len(self._df)
def num_chunks(self) -> int:
return 1
def column_names(self) -> Index:
return self._df.columns
def get_column(self, i: int) -> PandasColumn:
return PandasColumn(self._df.iloc[:, i], allow_copy=self._allow_copy)
def get_column_by_name(self, name: str) -> PandasColumn:
return PandasColumn(self._df[name], allow_copy=self._allow_copy)
def get_columns(self) -> list[PandasColumn]:
return [
PandasColumn(self._df[name], allow_copy=self._allow_copy)
for name in self._df.columns
]
def select_columns(self, indices) -> PandasDataFrameXchg:
if not isinstance(indices, abc.Sequence):
raise ValueError("`indices` is not a sequence")
if not isinstance(indices, list):
indices = list(indices)
return PandasDataFrameXchg(
self._df.iloc[:, indices], self._nan_as_null, self._allow_copy
)
def select_columns_by_name(self, names) -> PandasDataFrameXchg:
if not isinstance(names, abc.Sequence):
raise ValueError("`names` is not a sequence")
if not isinstance(names, list):
names = list(names)
return PandasDataFrameXchg(
self._df.loc[:, names], self._nan_as_null, self._allow_copy
)
def get_chunks(self, n_chunks=None):
"""
Return an iterator yielding the chunks.
"""
if n_chunks and n_chunks > 1:
size = len(self._df)
step = size // n_chunks
if size % n_chunks != 0:
step += 1
for start in range(0, step * n_chunks, step):
yield PandasDataFrameXchg(
self._df.iloc[start : start + step, :],
self._nan_as_null,
self._allow_copy,
)
else:
yield self