2608 lines
86 KiB
Python
2608 lines
86 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from functools import wraps
|
||
|
import re
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
Callable,
|
||
|
Iterable,
|
||
|
Sequence,
|
||
|
cast,
|
||
|
final,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._config import using_copy_on_write
|
||
|
|
||
|
from pandas._libs import (
|
||
|
internals as libinternals,
|
||
|
lib,
|
||
|
writers,
|
||
|
)
|
||
|
from pandas._libs.internals import (
|
||
|
BlockPlacement,
|
||
|
BlockValuesRefs,
|
||
|
)
|
||
|
from pandas._libs.missing import NA
|
||
|
from pandas._libs.tslibs import IncompatibleFrequency
|
||
|
from pandas._typing import (
|
||
|
ArrayLike,
|
||
|
AxisInt,
|
||
|
DtypeObj,
|
||
|
F,
|
||
|
FillnaOptions,
|
||
|
IgnoreRaise,
|
||
|
QuantileInterpolation,
|
||
|
Shape,
|
||
|
npt,
|
||
|
)
|
||
|
from pandas.errors import AbstractMethodError
|
||
|
from pandas.util._decorators import cache_readonly
|
||
|
from pandas.util._validators import validate_bool_kwarg
|
||
|
|
||
|
from pandas.core.dtypes.astype import (
|
||
|
astype_array_safe,
|
||
|
astype_is_view,
|
||
|
)
|
||
|
from pandas.core.dtypes.cast import (
|
||
|
LossySetitemError,
|
||
|
can_hold_element,
|
||
|
find_result_type,
|
||
|
maybe_downcast_to_dtype,
|
||
|
np_can_hold_element,
|
||
|
)
|
||
|
from pandas.core.dtypes.common import (
|
||
|
ensure_platform_int,
|
||
|
is_1d_only_ea_dtype,
|
||
|
is_1d_only_ea_obj,
|
||
|
is_dtype_equal,
|
||
|
is_interval_dtype,
|
||
|
is_list_like,
|
||
|
is_sparse,
|
||
|
is_string_dtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.dtypes import (
|
||
|
DatetimeTZDtype,
|
||
|
ExtensionDtype,
|
||
|
PandasDtype,
|
||
|
PeriodDtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.generic import (
|
||
|
ABCDataFrame,
|
||
|
ABCIndex,
|
||
|
ABCPandasArray,
|
||
|
ABCSeries,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import (
|
||
|
is_valid_na_for_dtype,
|
||
|
isna,
|
||
|
na_value_for_dtype,
|
||
|
)
|
||
|
|
||
|
from pandas.core import missing
|
||
|
import pandas.core.algorithms as algos
|
||
|
from pandas.core.array_algos.putmask import (
|
||
|
extract_bool_array,
|
||
|
putmask_inplace,
|
||
|
putmask_without_repeat,
|
||
|
setitem_datetimelike_compat,
|
||
|
validate_putmask,
|
||
|
)
|
||
|
from pandas.core.array_algos.quantile import quantile_compat
|
||
|
from pandas.core.array_algos.replace import (
|
||
|
compare_or_regex_search,
|
||
|
replace_regex,
|
||
|
should_use_regex,
|
||
|
)
|
||
|
from pandas.core.array_algos.transforms import shift
|
||
|
from pandas.core.arrays import (
|
||
|
Categorical,
|
||
|
DatetimeArray,
|
||
|
ExtensionArray,
|
||
|
IntervalArray,
|
||
|
PandasArray,
|
||
|
PeriodArray,
|
||
|
TimedeltaArray,
|
||
|
)
|
||
|
from pandas.core.arrays.sparse import SparseDtype
|
||
|
from pandas.core.base import PandasObject
|
||
|
import pandas.core.common as com
|
||
|
from pandas.core.computation import expressions
|
||
|
from pandas.core.construction import (
|
||
|
ensure_wrapped_if_datetimelike,
|
||
|
extract_array,
|
||
|
)
|
||
|
from pandas.core.indexers import check_setitem_lengths
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas.core.api import Index
|
||
|
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
|
||
|
|
||
|
# comparison is faster than is_object_dtype
|
||
|
_dtype_obj = np.dtype("object")
|
||
|
|
||
|
|
||
|
def maybe_split(meth: F) -> F:
|
||
|
"""
|
||
|
If we have a multi-column block, split and operate block-wise. Otherwise
|
||
|
use the original method.
|
||
|
"""
|
||
|
|
||
|
@wraps(meth)
|
||
|
def newfunc(self, *args, **kwargs) -> list[Block]:
|
||
|
if self.ndim == 1 or self.shape[0] == 1:
|
||
|
return meth(self, *args, **kwargs)
|
||
|
else:
|
||
|
# Split and operate column-by-column
|
||
|
return self.split_and_operate(meth, *args, **kwargs)
|
||
|
|
||
|
return cast(F, newfunc)
|
||
|
|
||
|
|
||
|
class Block(PandasObject):
|
||
|
"""
|
||
|
Canonical n-dimensional unit of homogeneous dtype contained in a pandas
|
||
|
data structure
|
||
|
|
||
|
Index-ignorant; let the container take care of that
|
||
|
"""
|
||
|
|
||
|
values: np.ndarray | ExtensionArray
|
||
|
ndim: int
|
||
|
refs: BlockValuesRefs
|
||
|
__init__: Callable
|
||
|
|
||
|
__slots__ = ()
|
||
|
is_numeric = False
|
||
|
is_object = False
|
||
|
is_extension = False
|
||
|
_can_consolidate = True
|
||
|
_validate_ndim = True
|
||
|
|
||
|
@final
|
||
|
@cache_readonly
|
||
|
def _consolidate_key(self):
|
||
|
return self._can_consolidate, self.dtype.name
|
||
|
|
||
|
@final
|
||
|
@cache_readonly
|
||
|
def _can_hold_na(self) -> bool:
|
||
|
"""
|
||
|
Can we store NA values in this Block?
|
||
|
"""
|
||
|
dtype = self.dtype
|
||
|
if isinstance(dtype, np.dtype):
|
||
|
return dtype.kind not in ["b", "i", "u"]
|
||
|
return dtype._can_hold_na
|
||
|
|
||
|
@final
|
||
|
@property
|
||
|
def is_bool(self) -> bool:
|
||
|
"""
|
||
|
We can be bool if a) we are bool dtype or b) object dtype with bool objects.
|
||
|
"""
|
||
|
return self.values.dtype == np.dtype(bool)
|
||
|
|
||
|
@final
|
||
|
def external_values(self):
|
||
|
return external_values(self.values)
|
||
|
|
||
|
@final
|
||
|
@cache_readonly
|
||
|
def fill_value(self):
|
||
|
# Used in reindex_indexer
|
||
|
return na_value_for_dtype(self.dtype, compat=False)
|
||
|
|
||
|
@final
|
||
|
def _standardize_fill_value(self, value):
|
||
|
# if we are passed a scalar None, convert it here
|
||
|
if self.dtype != _dtype_obj and is_valid_na_for_dtype(value, self.dtype):
|
||
|
value = self.fill_value
|
||
|
return value
|
||
|
|
||
|
@property
|
||
|
def mgr_locs(self) -> BlockPlacement:
|
||
|
return self._mgr_locs
|
||
|
|
||
|
@mgr_locs.setter
|
||
|
def mgr_locs(self, new_mgr_locs: BlockPlacement) -> None:
|
||
|
self._mgr_locs = new_mgr_locs
|
||
|
|
||
|
@final
|
||
|
def make_block(
|
||
|
self, values, placement=None, refs: BlockValuesRefs | None = None
|
||
|
) -> Block:
|
||
|
"""
|
||
|
Create a new block, with type inference propagate any values that are
|
||
|
not specified
|
||
|
"""
|
||
|
if placement is None:
|
||
|
placement = self._mgr_locs
|
||
|
if self.is_extension:
|
||
|
values = ensure_block_shape(values, ndim=self.ndim)
|
||
|
|
||
|
# TODO: perf by not going through new_block
|
||
|
# We assume maybe_coerce_values has already been called
|
||
|
return new_block(values, placement=placement, ndim=self.ndim, refs=refs)
|
||
|
|
||
|
@final
|
||
|
def make_block_same_class(
|
||
|
self,
|
||
|
values,
|
||
|
placement: BlockPlacement | None = None,
|
||
|
refs: BlockValuesRefs | None = None,
|
||
|
) -> Block:
|
||
|
"""Wrap given values in a block of same type as self."""
|
||
|
# Pre-2.0 we called ensure_wrapped_if_datetimelike because fastparquet
|
||
|
# relied on it, as of 2.0 the caller is responsible for this.
|
||
|
if placement is None:
|
||
|
placement = self._mgr_locs
|
||
|
|
||
|
# We assume maybe_coerce_values has already been called
|
||
|
return type(self)(values, placement=placement, ndim=self.ndim, refs=refs)
|
||
|
|
||
|
@final
|
||
|
def __repr__(self) -> str:
|
||
|
# don't want to print out all of the items here
|
||
|
name = type(self).__name__
|
||
|
if self.ndim == 1:
|
||
|
result = f"{name}: {len(self)} dtype: {self.dtype}"
|
||
|
else:
|
||
|
shape = " x ".join([str(s) for s in self.shape])
|
||
|
result = f"{name}: {self.mgr_locs.indexer}, {shape}, dtype: {self.dtype}"
|
||
|
|
||
|
return result
|
||
|
|
||
|
@final
|
||
|
def __len__(self) -> int:
|
||
|
return len(self.values)
|
||
|
|
||
|
@final
|
||
|
def getitem_block(self, slicer: slice | npt.NDArray[np.intp]) -> Block:
|
||
|
"""
|
||
|
Perform __getitem__-like, return result as block.
|
||
|
|
||
|
Only supports slices that preserve dimensionality.
|
||
|
"""
|
||
|
# Note: the only place where we are called with ndarray[intp]
|
||
|
# is from internals.concat, and we can verify that never happens
|
||
|
# with 1-column blocks, i.e. never for ExtensionBlock.
|
||
|
|
||
|
new_mgr_locs = self._mgr_locs[slicer]
|
||
|
|
||
|
new_values = self._slice(slicer)
|
||
|
refs = self.refs if isinstance(slicer, slice) else None
|
||
|
return type(self)(new_values, new_mgr_locs, self.ndim, refs=refs)
|
||
|
|
||
|
@final
|
||
|
def getitem_block_columns(
|
||
|
self, slicer: slice, new_mgr_locs: BlockPlacement
|
||
|
) -> Block:
|
||
|
"""
|
||
|
Perform __getitem__-like, return result as block.
|
||
|
|
||
|
Only supports slices that preserve dimensionality.
|
||
|
"""
|
||
|
new_values = self._slice(slicer)
|
||
|
|
||
|
if new_values.ndim != self.values.ndim:
|
||
|
raise ValueError("Only same dim slicing is allowed")
|
||
|
|
||
|
return type(self)(new_values, new_mgr_locs, self.ndim, refs=self.refs)
|
||
|
|
||
|
@final
|
||
|
def _can_hold_element(self, element: Any) -> bool:
|
||
|
"""require the same dtype as ourselves"""
|
||
|
element = extract_array(element, extract_numpy=True)
|
||
|
return can_hold_element(self.values, element)
|
||
|
|
||
|
@final
|
||
|
def should_store(self, value: ArrayLike) -> bool:
|
||
|
"""
|
||
|
Should we set self.values[indexer] = value inplace or do we need to cast?
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value : np.ndarray or ExtensionArray
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
"""
|
||
|
# faster equivalent to is_dtype_equal(value.dtype, self.dtype)
|
||
|
try:
|
||
|
return value.dtype == self.dtype
|
||
|
except TypeError:
|
||
|
return False
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Apply/Reduce and Helpers
|
||
|
|
||
|
@final
|
||
|
def apply(self, func, **kwargs) -> list[Block]:
|
||
|
"""
|
||
|
apply the function to my values; return a block if we are not
|
||
|
one
|
||
|
"""
|
||
|
result = func(self.values, **kwargs)
|
||
|
|
||
|
return self._split_op_result(result)
|
||
|
|
||
|
@final
|
||
|
def reduce(self, func) -> list[Block]:
|
||
|
# We will apply the function and reshape the result into a single-row
|
||
|
# Block with the same mgr_locs; squeezing will be done at a higher level
|
||
|
assert self.ndim == 2
|
||
|
|
||
|
result = func(self.values)
|
||
|
|
||
|
if self.values.ndim == 1:
|
||
|
# TODO(EA2D): special case not needed with 2D EAs
|
||
|
res_values = np.array([[result]])
|
||
|
else:
|
||
|
res_values = result.reshape(-1, 1)
|
||
|
|
||
|
nb = self.make_block(res_values)
|
||
|
return [nb]
|
||
|
|
||
|
@final
|
||
|
def _split_op_result(self, result: ArrayLike) -> list[Block]:
|
||
|
# See also: split_and_operate
|
||
|
if result.ndim > 1 and isinstance(result.dtype, ExtensionDtype):
|
||
|
# TODO(EA2D): unnecessary with 2D EAs
|
||
|
# if we get a 2D ExtensionArray, we need to split it into 1D pieces
|
||
|
nbs = []
|
||
|
for i, loc in enumerate(self._mgr_locs):
|
||
|
if not is_1d_only_ea_obj(result):
|
||
|
vals = result[i : i + 1]
|
||
|
else:
|
||
|
vals = result[i]
|
||
|
|
||
|
block = self.make_block(values=vals, placement=loc)
|
||
|
nbs.append(block)
|
||
|
return nbs
|
||
|
|
||
|
nb = self.make_block(result)
|
||
|
|
||
|
return [nb]
|
||
|
|
||
|
@final
|
||
|
def _split(self) -> list[Block]:
|
||
|
"""
|
||
|
Split a block into a list of single-column blocks.
|
||
|
"""
|
||
|
assert self.ndim == 2
|
||
|
|
||
|
new_blocks = []
|
||
|
for i, ref_loc in enumerate(self._mgr_locs):
|
||
|
vals = self.values[slice(i, i + 1)]
|
||
|
|
||
|
bp = BlockPlacement(ref_loc)
|
||
|
nb = type(self)(vals, placement=bp, ndim=2, refs=self.refs)
|
||
|
new_blocks.append(nb)
|
||
|
return new_blocks
|
||
|
|
||
|
@final
|
||
|
def split_and_operate(self, func, *args, **kwargs) -> list[Block]:
|
||
|
"""
|
||
|
Split the block and apply func column-by-column.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : Block method
|
||
|
*args
|
||
|
**kwargs
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
List[Block]
|
||
|
"""
|
||
|
assert self.ndim == 2 and self.shape[0] != 1
|
||
|
|
||
|
res_blocks = []
|
||
|
for nb in self._split():
|
||
|
rbs = func(nb, *args, **kwargs)
|
||
|
res_blocks.extend(rbs)
|
||
|
return res_blocks
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Up/Down-casting
|
||
|
|
||
|
@final
|
||
|
def coerce_to_target_dtype(self, other) -> Block:
|
||
|
"""
|
||
|
coerce the current block to a dtype compat for other
|
||
|
we will return a block, possibly object, and not raise
|
||
|
|
||
|
we can also safely try to coerce to the same dtype
|
||
|
and will receive the same block
|
||
|
"""
|
||
|
new_dtype = find_result_type(self.values, other)
|
||
|
|
||
|
return self.astype(new_dtype, copy=False)
|
||
|
|
||
|
@final
|
||
|
def _maybe_downcast(
|
||
|
self, blocks: list[Block], downcast=None, using_cow: bool = False
|
||
|
) -> list[Block]:
|
||
|
if downcast is False:
|
||
|
return blocks
|
||
|
|
||
|
if self.dtype == _dtype_obj:
|
||
|
# TODO: does it matter that self.dtype might not match blocks[i].dtype?
|
||
|
# GH#44241 We downcast regardless of the argument;
|
||
|
# respecting 'downcast=None' may be worthwhile at some point,
|
||
|
# but ATM it breaks too much existing code.
|
||
|
# split and convert the blocks
|
||
|
|
||
|
return extend_blocks(
|
||
|
[blk.convert(using_cow=using_cow, copy=not using_cow) for blk in blocks]
|
||
|
)
|
||
|
|
||
|
if downcast is None:
|
||
|
return blocks
|
||
|
|
||
|
return extend_blocks([b._downcast_2d(downcast, using_cow) for b in blocks])
|
||
|
|
||
|
@final
|
||
|
@maybe_split
|
||
|
def _downcast_2d(self, dtype, using_cow: bool = False) -> list[Block]:
|
||
|
"""
|
||
|
downcast specialized to 2D case post-validation.
|
||
|
|
||
|
Refactored to allow use of maybe_split.
|
||
|
"""
|
||
|
new_values = maybe_downcast_to_dtype(self.values, dtype=dtype)
|
||
|
refs = self.refs if using_cow and new_values is self.values else None
|
||
|
return [self.make_block(new_values, refs=refs)]
|
||
|
|
||
|
def convert(
|
||
|
self,
|
||
|
*,
|
||
|
copy: bool = True,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
attempt to coerce any object types to better types return a copy
|
||
|
of the block (if copy = True) by definition we are not an ObjectBlock
|
||
|
here!
|
||
|
"""
|
||
|
if not copy and using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self.copy()] if copy else [self]
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Array-Like Methods
|
||
|
|
||
|
@cache_readonly
|
||
|
def dtype(self) -> DtypeObj:
|
||
|
return self.values.dtype
|
||
|
|
||
|
@final
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: DtypeObj,
|
||
|
copy: bool = False,
|
||
|
errors: IgnoreRaise = "raise",
|
||
|
using_cow: bool = False,
|
||
|
) -> Block:
|
||
|
"""
|
||
|
Coerce to the new dtype.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype : np.dtype or ExtensionDtype
|
||
|
copy : bool, default False
|
||
|
copy if indicated
|
||
|
errors : str, {'raise', 'ignore'}, default 'raise'
|
||
|
- ``raise`` : allow exceptions to be raised
|
||
|
- ``ignore`` : suppress exceptions. On error return original object
|
||
|
using_cow: bool, default False
|
||
|
Signaling if copy on write copy logic is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Block
|
||
|
"""
|
||
|
values = self.values
|
||
|
|
||
|
new_values = astype_array_safe(values, dtype, copy=copy, errors=errors)
|
||
|
|
||
|
new_values = maybe_coerce_values(new_values)
|
||
|
|
||
|
refs = None
|
||
|
if using_cow and astype_is_view(values.dtype, new_values.dtype):
|
||
|
refs = self.refs
|
||
|
|
||
|
newb = self.make_block(new_values, refs=refs)
|
||
|
if newb.shape != self.shape:
|
||
|
raise TypeError(
|
||
|
f"cannot set astype for copy = [{copy}] for dtype "
|
||
|
f"({self.dtype.name} [{self.shape}]) to different shape "
|
||
|
f"({newb.dtype.name} [{newb.shape}])"
|
||
|
)
|
||
|
return newb
|
||
|
|
||
|
@final
|
||
|
def to_native_types(self, na_rep: str = "nan", quoting=None, **kwargs) -> Block:
|
||
|
"""convert to our native types format"""
|
||
|
result = to_native_types(self.values, na_rep=na_rep, quoting=quoting, **kwargs)
|
||
|
return self.make_block(result)
|
||
|
|
||
|
@final
|
||
|
def copy(self, deep: bool = True) -> Block:
|
||
|
"""copy constructor"""
|
||
|
values = self.values
|
||
|
refs: BlockValuesRefs | None
|
||
|
if deep:
|
||
|
values = values.copy()
|
||
|
refs = None
|
||
|
else:
|
||
|
refs = self.refs
|
||
|
return type(self)(values, placement=self._mgr_locs, ndim=self.ndim, refs=refs)
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Replace
|
||
|
|
||
|
@final
|
||
|
def replace(
|
||
|
self,
|
||
|
to_replace,
|
||
|
value,
|
||
|
inplace: bool = False,
|
||
|
# mask may be pre-computed if we're called from replace_list
|
||
|
mask: npt.NDArray[np.bool_] | None = None,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
replace the to_replace value with value, possible to create new
|
||
|
blocks here this is just a call to putmask.
|
||
|
"""
|
||
|
|
||
|
# Note: the checks we do in NDFrame.replace ensure we never get
|
||
|
# here with listlike to_replace or value, as those cases
|
||
|
# go through replace_list
|
||
|
values = self.values
|
||
|
|
||
|
if isinstance(values, Categorical):
|
||
|
# TODO: avoid special-casing
|
||
|
# GH49404
|
||
|
if using_cow and (self.refs.has_reference() or not inplace):
|
||
|
blk = self.copy()
|
||
|
elif using_cow:
|
||
|
blk = self.copy(deep=False)
|
||
|
else:
|
||
|
blk = self if inplace else self.copy()
|
||
|
values = cast(Categorical, blk.values)
|
||
|
values._replace(to_replace=to_replace, value=value, inplace=True)
|
||
|
return [blk]
|
||
|
|
||
|
if not self._can_hold_element(to_replace):
|
||
|
# We cannot hold `to_replace`, so we know immediately that
|
||
|
# replacing it is a no-op.
|
||
|
# Note: If to_replace were a list, NDFrame.replace would call
|
||
|
# replace_list instead of replace.
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
else:
|
||
|
return [self] if inplace else [self.copy()]
|
||
|
|
||
|
if mask is None:
|
||
|
mask = missing.mask_missing(values, to_replace)
|
||
|
if not mask.any():
|
||
|
# Note: we get here with test_replace_extension_other incorrectly
|
||
|
# bc _can_hold_element is incorrect.
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
else:
|
||
|
return [self] if inplace else [self.copy()]
|
||
|
|
||
|
elif self._can_hold_element(value):
|
||
|
# TODO(CoW): Maybe split here as well into columns where mask has True
|
||
|
# and rest?
|
||
|
if using_cow:
|
||
|
if inplace:
|
||
|
blk = self.copy(deep=self.refs.has_reference())
|
||
|
else:
|
||
|
blk = self.copy()
|
||
|
else:
|
||
|
blk = self if inplace else self.copy()
|
||
|
putmask_inplace(blk.values, mask, value)
|
||
|
if not (self.is_object and value is None):
|
||
|
# if the user *explicitly* gave None, we keep None, otherwise
|
||
|
# may downcast to NaN
|
||
|
blocks = blk.convert(copy=False, using_cow=using_cow)
|
||
|
else:
|
||
|
blocks = [blk]
|
||
|
return blocks
|
||
|
|
||
|
elif self.ndim == 1 or self.shape[0] == 1:
|
||
|
if value is None or value is NA:
|
||
|
blk = self.astype(np.dtype(object))
|
||
|
else:
|
||
|
blk = self.coerce_to_target_dtype(value)
|
||
|
return blk.replace(
|
||
|
to_replace=to_replace,
|
||
|
value=value,
|
||
|
inplace=True,
|
||
|
mask=mask,
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
# split so that we only upcast where necessary
|
||
|
blocks = []
|
||
|
for i, nb in enumerate(self._split()):
|
||
|
blocks.extend(
|
||
|
type(self).replace(
|
||
|
nb,
|
||
|
to_replace=to_replace,
|
||
|
value=value,
|
||
|
inplace=True,
|
||
|
mask=mask[i : i + 1],
|
||
|
using_cow=using_cow,
|
||
|
)
|
||
|
)
|
||
|
return blocks
|
||
|
|
||
|
@final
|
||
|
def _replace_regex(
|
||
|
self,
|
||
|
to_replace,
|
||
|
value,
|
||
|
inplace: bool = False,
|
||
|
mask=None,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
Replace elements by the given value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
to_replace : object or pattern
|
||
|
Scalar to replace or regular expression to match.
|
||
|
value : object
|
||
|
Replacement object.
|
||
|
inplace : bool, default False
|
||
|
Perform inplace modification.
|
||
|
mask : array-like of bool, optional
|
||
|
True indicate corresponding element is ignored.
|
||
|
using_cow: bool, default False
|
||
|
Specifying if copy on write is enabled.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
List[Block]
|
||
|
"""
|
||
|
if not self._can_hold_element(to_replace):
|
||
|
# i.e. only ObjectBlock, but could in principle include a
|
||
|
# String ExtensionBlock
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self] if inplace else [self.copy()]
|
||
|
|
||
|
rx = re.compile(to_replace)
|
||
|
|
||
|
if using_cow:
|
||
|
if inplace and not self.refs.has_reference():
|
||
|
refs = self.refs
|
||
|
new_values = self.values
|
||
|
else:
|
||
|
refs = None
|
||
|
new_values = self.values.copy()
|
||
|
else:
|
||
|
refs = None
|
||
|
new_values = self.values if inplace else self.values.copy()
|
||
|
|
||
|
replace_regex(new_values, rx, value, mask)
|
||
|
|
||
|
block = self.make_block(new_values, refs=refs)
|
||
|
return block.convert(copy=False, using_cow=using_cow)
|
||
|
|
||
|
@final
|
||
|
def replace_list(
|
||
|
self,
|
||
|
src_list: Iterable[Any],
|
||
|
dest_list: Sequence[Any],
|
||
|
inplace: bool = False,
|
||
|
regex: bool = False,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
See BlockManager.replace_list docstring.
|
||
|
"""
|
||
|
values = self.values
|
||
|
|
||
|
if isinstance(values, Categorical):
|
||
|
# TODO: avoid special-casing
|
||
|
# GH49404
|
||
|
if using_cow and inplace:
|
||
|
blk = self.copy(deep=self.refs.has_reference())
|
||
|
else:
|
||
|
blk = self if inplace else self.copy()
|
||
|
values = cast(Categorical, blk.values)
|
||
|
values._replace(to_replace=src_list, value=dest_list, inplace=True)
|
||
|
return [blk]
|
||
|
|
||
|
# Exclude anything that we know we won't contain
|
||
|
pairs = [
|
||
|
(x, y) for x, y in zip(src_list, dest_list) if self._can_hold_element(x)
|
||
|
]
|
||
|
if not len(pairs):
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
# shortcut, nothing to replace
|
||
|
return [self] if inplace else [self.copy()]
|
||
|
|
||
|
src_len = len(pairs) - 1
|
||
|
|
||
|
if is_string_dtype(values.dtype):
|
||
|
# Calculate the mask once, prior to the call of comp
|
||
|
# in order to avoid repeating the same computations
|
||
|
na_mask = ~isna(values)
|
||
|
masks: Iterable[npt.NDArray[np.bool_]] = (
|
||
|
extract_bool_array(
|
||
|
cast(
|
||
|
ArrayLike,
|
||
|
compare_or_regex_search(
|
||
|
values, s[0], regex=regex, mask=na_mask
|
||
|
),
|
||
|
)
|
||
|
)
|
||
|
for s in pairs
|
||
|
)
|
||
|
else:
|
||
|
# GH#38086 faster if we know we dont need to check for regex
|
||
|
masks = (missing.mask_missing(values, s[0]) for s in pairs)
|
||
|
# Materialize if inplace = True, since the masks can change
|
||
|
# as we replace
|
||
|
if inplace:
|
||
|
masks = list(masks)
|
||
|
|
||
|
if using_cow and inplace:
|
||
|
# Don't set up refs here, otherwise we will think that we have
|
||
|
# references when we check again later
|
||
|
rb = [self]
|
||
|
else:
|
||
|
rb = [self if inplace else self.copy()]
|
||
|
|
||
|
for i, ((src, dest), mask) in enumerate(zip(pairs, masks)):
|
||
|
convert = i == src_len # only convert once at the end
|
||
|
new_rb: list[Block] = []
|
||
|
|
||
|
# GH-39338: _replace_coerce can split a block into
|
||
|
# single-column blocks, so track the index so we know
|
||
|
# where to index into the mask
|
||
|
for blk_num, blk in enumerate(rb):
|
||
|
if len(rb) == 1:
|
||
|
m = mask
|
||
|
else:
|
||
|
mib = mask
|
||
|
assert not isinstance(mib, bool)
|
||
|
m = mib[blk_num : blk_num + 1]
|
||
|
|
||
|
# error: Argument "mask" to "_replace_coerce" of "Block" has
|
||
|
# incompatible type "Union[ExtensionArray, ndarray[Any, Any], bool]";
|
||
|
# expected "ndarray[Any, dtype[bool_]]"
|
||
|
result = blk._replace_coerce(
|
||
|
to_replace=src,
|
||
|
value=dest,
|
||
|
mask=m,
|
||
|
inplace=inplace,
|
||
|
regex=regex,
|
||
|
using_cow=using_cow,
|
||
|
)
|
||
|
if convert and blk.is_object and not all(x is None for x in dest_list):
|
||
|
# GH#44498 avoid unwanted cast-back
|
||
|
result = extend_blocks(
|
||
|
[
|
||
|
b.convert(copy=True and not using_cow, using_cow=using_cow)
|
||
|
for b in result
|
||
|
]
|
||
|
)
|
||
|
new_rb.extend(result)
|
||
|
rb = new_rb
|
||
|
return rb
|
||
|
|
||
|
@final
|
||
|
def _replace_coerce(
|
||
|
self,
|
||
|
to_replace,
|
||
|
value,
|
||
|
mask: npt.NDArray[np.bool_],
|
||
|
inplace: bool = True,
|
||
|
regex: bool = False,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
Replace value corresponding to the given boolean array with another
|
||
|
value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
to_replace : object or pattern
|
||
|
Scalar to replace or regular expression to match.
|
||
|
value : object
|
||
|
Replacement object.
|
||
|
mask : np.ndarray[bool]
|
||
|
True indicate corresponding element is ignored.
|
||
|
inplace : bool, default True
|
||
|
Perform inplace modification.
|
||
|
regex : bool, default False
|
||
|
If true, perform regular expression substitution.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
List[Block]
|
||
|
"""
|
||
|
if should_use_regex(regex, to_replace):
|
||
|
return self._replace_regex(
|
||
|
to_replace,
|
||
|
value,
|
||
|
inplace=inplace,
|
||
|
mask=mask,
|
||
|
)
|
||
|
else:
|
||
|
if value is None:
|
||
|
# gh-45601, gh-45836, gh-46634
|
||
|
if mask.any():
|
||
|
has_ref = self.refs.has_reference()
|
||
|
nb = self.astype(np.dtype(object), copy=False, using_cow=using_cow)
|
||
|
if (nb is self or using_cow) and not inplace:
|
||
|
nb = nb.copy()
|
||
|
elif inplace and has_ref and nb.refs.has_reference():
|
||
|
# no copy in astype and we had refs before
|
||
|
nb = nb.copy()
|
||
|
putmask_inplace(nb.values, mask, value)
|
||
|
return [nb]
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self] if inplace else [self.copy()]
|
||
|
return self.replace(
|
||
|
to_replace=to_replace,
|
||
|
value=value,
|
||
|
inplace=inplace,
|
||
|
mask=mask,
|
||
|
using_cow=using_cow,
|
||
|
)
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# 2D Methods - Shared by NumpyBlock and NDArrayBackedExtensionBlock
|
||
|
# but not ExtensionBlock
|
||
|
|
||
|
def _maybe_squeeze_arg(self, arg: np.ndarray) -> np.ndarray:
|
||
|
"""
|
||
|
For compatibility with 1D-only ExtensionArrays.
|
||
|
"""
|
||
|
return arg
|
||
|
|
||
|
def _unwrap_setitem_indexer(self, indexer):
|
||
|
"""
|
||
|
For compatibility with 1D-only ExtensionArrays.
|
||
|
"""
|
||
|
return indexer
|
||
|
|
||
|
# NB: this cannot be made cache_readonly because in mgr.set_values we pin
|
||
|
# new .values that can have different shape GH#42631
|
||
|
@property
|
||
|
def shape(self) -> Shape:
|
||
|
return self.values.shape
|
||
|
|
||
|
def iget(self, i: int | tuple[int, int] | tuple[slice, int]) -> np.ndarray:
|
||
|
# In the case where we have a tuple[slice, int], the slice will always
|
||
|
# be slice(None)
|
||
|
# Note: only reached with self.ndim == 2
|
||
|
# Invalid index type "Union[int, Tuple[int, int], Tuple[slice, int]]"
|
||
|
# for "Union[ndarray[Any, Any], ExtensionArray]"; expected type
|
||
|
# "Union[int, integer[Any]]"
|
||
|
return self.values[i] # type: ignore[index]
|
||
|
|
||
|
def _slice(
|
||
|
self, slicer: slice | npt.NDArray[np.bool_] | npt.NDArray[np.intp]
|
||
|
) -> ArrayLike:
|
||
|
"""return a slice of my values"""
|
||
|
|
||
|
return self.values[slicer]
|
||
|
|
||
|
def set_inplace(self, locs, values: ArrayLike, copy: bool = False) -> None:
|
||
|
"""
|
||
|
Modify block values in-place with new item value.
|
||
|
|
||
|
If copy=True, first copy the underlying values in place before modifying
|
||
|
(for Copy-on-Write).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`set_inplace` never creates a new array or new Block, whereas `setitem`
|
||
|
_may_ create a new array and always creates a new Block.
|
||
|
|
||
|
Caller is responsible for checking values.dtype == self.dtype.
|
||
|
"""
|
||
|
if copy:
|
||
|
self.values = self.values.copy()
|
||
|
self.values[locs] = values
|
||
|
|
||
|
def take_nd(
|
||
|
self,
|
||
|
indexer: npt.NDArray[np.intp],
|
||
|
axis: AxisInt,
|
||
|
new_mgr_locs: BlockPlacement | None = None,
|
||
|
fill_value=lib.no_default,
|
||
|
) -> Block:
|
||
|
"""
|
||
|
Take values according to indexer and return them as a block.
|
||
|
"""
|
||
|
values = self.values
|
||
|
|
||
|
if fill_value is lib.no_default:
|
||
|
fill_value = self.fill_value
|
||
|
allow_fill = False
|
||
|
else:
|
||
|
allow_fill = True
|
||
|
|
||
|
# Note: algos.take_nd has upcast logic similar to coerce_to_target_dtype
|
||
|
new_values = algos.take_nd(
|
||
|
values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value
|
||
|
)
|
||
|
|
||
|
# Called from three places in managers, all of which satisfy
|
||
|
# these assertions
|
||
|
if isinstance(self, ExtensionBlock):
|
||
|
# NB: in this case, the 'axis' kwarg will be ignored in the
|
||
|
# algos.take_nd call above.
|
||
|
assert not (self.ndim == 1 and new_mgr_locs is None)
|
||
|
assert not (axis == 0 and new_mgr_locs is None)
|
||
|
|
||
|
if new_mgr_locs is None:
|
||
|
new_mgr_locs = self._mgr_locs
|
||
|
|
||
|
if not is_dtype_equal(new_values.dtype, self.dtype):
|
||
|
return self.make_block(new_values, new_mgr_locs)
|
||
|
else:
|
||
|
return self.make_block_same_class(new_values, new_mgr_locs)
|
||
|
|
||
|
def _unstack(
|
||
|
self,
|
||
|
unstacker,
|
||
|
fill_value,
|
||
|
new_placement: npt.NDArray[np.intp],
|
||
|
needs_masking: npt.NDArray[np.bool_],
|
||
|
):
|
||
|
"""
|
||
|
Return a list of unstacked blocks of self
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
unstacker : reshape._Unstacker
|
||
|
fill_value : int
|
||
|
Only used in ExtensionBlock._unstack
|
||
|
new_placement : np.ndarray[np.intp]
|
||
|
allow_fill : bool
|
||
|
needs_masking : np.ndarray[bool]
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
blocks : list of Block
|
||
|
New blocks of unstacked values.
|
||
|
mask : array-like of bool
|
||
|
The mask of columns of `blocks` we should keep.
|
||
|
"""
|
||
|
new_values, mask = unstacker.get_new_values(
|
||
|
self.values.T, fill_value=fill_value
|
||
|
)
|
||
|
|
||
|
mask = mask.any(0)
|
||
|
# TODO: in all tests we have mask.all(); can we rely on that?
|
||
|
|
||
|
# Note: these next two lines ensure that
|
||
|
# mask.sum() == sum(len(nb.mgr_locs) for nb in blocks)
|
||
|
# which the calling function needs in order to pass verify_integrity=False
|
||
|
# to the BlockManager constructor
|
||
|
new_values = new_values.T[mask]
|
||
|
new_placement = new_placement[mask]
|
||
|
|
||
|
bp = BlockPlacement(new_placement)
|
||
|
blocks = [new_block_2d(new_values, placement=bp)]
|
||
|
return blocks, mask
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
|
||
|
def setitem(self, indexer, value, using_cow: bool = False) -> Block:
|
||
|
"""
|
||
|
Attempt self.values[indexer] = value, possibly creating a new array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indexer : tuple, list-like, array-like, slice, int
|
||
|
The subset of self.values to set
|
||
|
value : object
|
||
|
The value being set
|
||
|
using_cow: bool, default False
|
||
|
Signaling if CoW is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Block
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`indexer` is a direct slice/positional indexer. `value` must
|
||
|
be a compatible shape.
|
||
|
"""
|
||
|
|
||
|
value = self._standardize_fill_value(value)
|
||
|
|
||
|
values = cast(np.ndarray, self.values)
|
||
|
if self.ndim == 2:
|
||
|
values = values.T
|
||
|
|
||
|
# length checking
|
||
|
check_setitem_lengths(indexer, value, values)
|
||
|
|
||
|
value = extract_array(value, extract_numpy=True)
|
||
|
try:
|
||
|
casted = np_can_hold_element(values.dtype, value)
|
||
|
except LossySetitemError:
|
||
|
# current dtype cannot store value, coerce to common dtype
|
||
|
nb = self.coerce_to_target_dtype(value)
|
||
|
return nb.setitem(indexer, value)
|
||
|
else:
|
||
|
if self.dtype == _dtype_obj:
|
||
|
# TODO: avoid having to construct values[indexer]
|
||
|
vi = values[indexer]
|
||
|
if lib.is_list_like(vi):
|
||
|
# checking lib.is_scalar here fails on
|
||
|
# test_iloc_setitem_custom_object
|
||
|
casted = setitem_datetimelike_compat(values, len(vi), casted)
|
||
|
|
||
|
if using_cow and self.refs.has_reference():
|
||
|
values = values.copy()
|
||
|
self = self.make_block_same_class(
|
||
|
values.T if values.ndim == 2 else values
|
||
|
)
|
||
|
if isinstance(casted, np.ndarray) and casted.ndim == 1 and len(casted) == 1:
|
||
|
# NumPy 1.25 deprecation: https://github.com/numpy/numpy/pull/10615
|
||
|
casted = casted[0, ...]
|
||
|
values[indexer] = casted
|
||
|
return self
|
||
|
|
||
|
def putmask(self, mask, new, using_cow: bool = False) -> list[Block]:
|
||
|
"""
|
||
|
putmask the data to the block; it is possible that we may create a
|
||
|
new dtype of block
|
||
|
|
||
|
Return the resulting block(s).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mask : np.ndarray[bool], SparseArray[bool], or BooleanArray
|
||
|
new : a ndarray/object
|
||
|
using_cow: bool, default False
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
List[Block]
|
||
|
"""
|
||
|
orig_mask = mask
|
||
|
values = cast(np.ndarray, self.values)
|
||
|
mask, noop = validate_putmask(values.T, mask)
|
||
|
assert not isinstance(new, (ABCIndex, ABCSeries, ABCDataFrame))
|
||
|
|
||
|
if new is lib.no_default:
|
||
|
new = self.fill_value
|
||
|
|
||
|
new = self._standardize_fill_value(new)
|
||
|
new = extract_array(new, extract_numpy=True)
|
||
|
|
||
|
if noop:
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self]
|
||
|
|
||
|
try:
|
||
|
casted = np_can_hold_element(values.dtype, new)
|
||
|
|
||
|
if using_cow and self.refs.has_reference():
|
||
|
# Do this here to avoid copying twice
|
||
|
values = values.copy()
|
||
|
self = self.make_block_same_class(values)
|
||
|
|
||
|
putmask_without_repeat(values.T, mask, casted)
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self]
|
||
|
except LossySetitemError:
|
||
|
if self.ndim == 1 or self.shape[0] == 1:
|
||
|
# no need to split columns
|
||
|
|
||
|
if not is_list_like(new):
|
||
|
# using just new[indexer] can't save us the need to cast
|
||
|
return self.coerce_to_target_dtype(new).putmask(mask, new)
|
||
|
else:
|
||
|
indexer = mask.nonzero()[0]
|
||
|
nb = self.setitem(indexer, new[indexer], using_cow=using_cow)
|
||
|
return [nb]
|
||
|
|
||
|
else:
|
||
|
is_array = isinstance(new, np.ndarray)
|
||
|
|
||
|
res_blocks = []
|
||
|
nbs = self._split()
|
||
|
for i, nb in enumerate(nbs):
|
||
|
n = new
|
||
|
if is_array:
|
||
|
# we have a different value per-column
|
||
|
n = new[:, i : i + 1]
|
||
|
|
||
|
submask = orig_mask[:, i : i + 1]
|
||
|
rbs = nb.putmask(submask, n, using_cow=using_cow)
|
||
|
res_blocks.extend(rbs)
|
||
|
return res_blocks
|
||
|
|
||
|
def where(
|
||
|
self, other, cond, _downcast: str | bool = "infer", using_cow: bool = False
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
evaluate the block; return result block(s) from the result
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : a ndarray/object
|
||
|
cond : np.ndarray[bool], SparseArray[bool], or BooleanArray
|
||
|
_downcast : str or None, default "infer"
|
||
|
Private because we only specify it when calling from fillna.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
List[Block]
|
||
|
"""
|
||
|
assert cond.ndim == self.ndim
|
||
|
assert not isinstance(other, (ABCIndex, ABCSeries, ABCDataFrame))
|
||
|
|
||
|
transpose = self.ndim == 2
|
||
|
|
||
|
cond = extract_bool_array(cond)
|
||
|
|
||
|
# EABlocks override where
|
||
|
values = cast(np.ndarray, self.values)
|
||
|
orig_other = other
|
||
|
if transpose:
|
||
|
values = values.T
|
||
|
|
||
|
icond, noop = validate_putmask(values, ~cond)
|
||
|
if noop:
|
||
|
# GH-39595: Always return a copy; short-circuit up/downcasting
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self.copy()]
|
||
|
|
||
|
if other is lib.no_default:
|
||
|
other = self.fill_value
|
||
|
|
||
|
other = self._standardize_fill_value(other)
|
||
|
|
||
|
try:
|
||
|
# try/except here is equivalent to a self._can_hold_element check,
|
||
|
# but this gets us back 'casted' which we will re-use below;
|
||
|
# without using 'casted', expressions.where may do unwanted upcasts.
|
||
|
casted = np_can_hold_element(values.dtype, other)
|
||
|
except (ValueError, TypeError, LossySetitemError):
|
||
|
# we cannot coerce, return a compat dtype
|
||
|
|
||
|
if self.ndim == 1 or self.shape[0] == 1:
|
||
|
# no need to split columns
|
||
|
|
||
|
block = self.coerce_to_target_dtype(other)
|
||
|
blocks = block.where(orig_other, cond, using_cow=using_cow)
|
||
|
return self._maybe_downcast(
|
||
|
blocks, downcast=_downcast, using_cow=using_cow
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
# since _maybe_downcast would split blocks anyway, we
|
||
|
# can avoid some potential upcast/downcast by splitting
|
||
|
# on the front end.
|
||
|
is_array = isinstance(other, (np.ndarray, ExtensionArray))
|
||
|
|
||
|
res_blocks = []
|
||
|
nbs = self._split()
|
||
|
for i, nb in enumerate(nbs):
|
||
|
oth = other
|
||
|
if is_array:
|
||
|
# we have a different value per-column
|
||
|
oth = other[:, i : i + 1]
|
||
|
|
||
|
submask = cond[:, i : i + 1]
|
||
|
rbs = nb.where(
|
||
|
oth, submask, _downcast=_downcast, using_cow=using_cow
|
||
|
)
|
||
|
res_blocks.extend(rbs)
|
||
|
return res_blocks
|
||
|
|
||
|
else:
|
||
|
other = casted
|
||
|
alt = setitem_datetimelike_compat(values, icond.sum(), other)
|
||
|
if alt is not other:
|
||
|
if is_list_like(other) and len(other) < len(values):
|
||
|
# call np.where with other to get the appropriate ValueError
|
||
|
np.where(~icond, values, other)
|
||
|
raise NotImplementedError(
|
||
|
"This should not be reached; call to np.where above is "
|
||
|
"expected to raise ValueError. Please report a bug at "
|
||
|
"github.com/pandas-dev/pandas"
|
||
|
)
|
||
|
result = values.copy()
|
||
|
np.putmask(result, icond, alt)
|
||
|
else:
|
||
|
# By the time we get here, we should have all Series/Index
|
||
|
# args extracted to ndarray
|
||
|
if (
|
||
|
is_list_like(other)
|
||
|
and not isinstance(other, np.ndarray)
|
||
|
and len(other) == self.shape[-1]
|
||
|
):
|
||
|
# If we don't do this broadcasting here, then expressions.where
|
||
|
# will broadcast a 1D other to be row-like instead of
|
||
|
# column-like.
|
||
|
other = np.array(other).reshape(values.shape)
|
||
|
# If lengths don't match (or len(other)==1), we will raise
|
||
|
# inside expressions.where, see test_series_where
|
||
|
|
||
|
# Note: expressions.where may upcast.
|
||
|
result = expressions.where(~icond, values, other)
|
||
|
# The np_can_hold_element check _should_ ensure that we always
|
||
|
# have result.dtype == self.dtype here.
|
||
|
|
||
|
if transpose:
|
||
|
result = result.T
|
||
|
|
||
|
return [self.make_block(result)]
|
||
|
|
||
|
def fillna(
|
||
|
self,
|
||
|
value,
|
||
|
limit: int | None = None,
|
||
|
inplace: bool = False,
|
||
|
downcast=None,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
fillna on the block with the value. If we fail, then convert to
|
||
|
ObjectBlock and try again
|
||
|
"""
|
||
|
# Caller is responsible for validating limit; if int it is strictly positive
|
||
|
inplace = validate_bool_kwarg(inplace, "inplace")
|
||
|
|
||
|
if not self._can_hold_na:
|
||
|
# can short-circuit the isna call
|
||
|
noop = True
|
||
|
else:
|
||
|
mask = isna(self.values)
|
||
|
mask, noop = validate_putmask(self.values, mask)
|
||
|
|
||
|
if noop:
|
||
|
# we can't process the value, but nothing to do
|
||
|
if inplace:
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
# Arbitrarily imposing the convention that we ignore downcast
|
||
|
# on no-op when inplace=True
|
||
|
return [self]
|
||
|
else:
|
||
|
# GH#45423 consistent downcasting on no-ops.
|
||
|
nb = self.copy(deep=not using_cow)
|
||
|
nbs = nb._maybe_downcast([nb], downcast=downcast, using_cow=using_cow)
|
||
|
return nbs
|
||
|
|
||
|
if limit is not None:
|
||
|
mask[mask.cumsum(self.ndim - 1) > limit] = False
|
||
|
|
||
|
if inplace:
|
||
|
nbs = self.putmask(mask.T, value, using_cow=using_cow)
|
||
|
else:
|
||
|
# without _downcast, we would break
|
||
|
# test_fillna_dtype_conversion_equiv_replace
|
||
|
nbs = self.where(value, ~mask.T, _downcast=False)
|
||
|
|
||
|
# Note: blk._maybe_downcast vs self._maybe_downcast(nbs)
|
||
|
# makes a difference bc blk may have object dtype, which has
|
||
|
# different behavior in _maybe_downcast.
|
||
|
return extend_blocks(
|
||
|
[
|
||
|
blk._maybe_downcast([blk], downcast=downcast, using_cow=using_cow)
|
||
|
for blk in nbs
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def interpolate(
|
||
|
self,
|
||
|
*,
|
||
|
method: FillnaOptions = "pad",
|
||
|
axis: AxisInt = 0,
|
||
|
index: Index | None = None,
|
||
|
inplace: bool = False,
|
||
|
limit: int | None = None,
|
||
|
limit_direction: str = "forward",
|
||
|
limit_area: str | None = None,
|
||
|
fill_value: Any | None = None,
|
||
|
downcast: str | None = None,
|
||
|
using_cow: bool = False,
|
||
|
**kwargs,
|
||
|
) -> list[Block]:
|
||
|
inplace = validate_bool_kwarg(inplace, "inplace")
|
||
|
|
||
|
if not self._can_hold_na:
|
||
|
# If there are no NAs, then interpolate is a no-op
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self] if inplace else [self.copy()]
|
||
|
|
||
|
try:
|
||
|
m = missing.clean_fill_method(method)
|
||
|
except ValueError:
|
||
|
m = None
|
||
|
if m is None and self.dtype.kind != "f":
|
||
|
# only deal with floats
|
||
|
# bc we already checked that can_hold_na, we don't have int dtype here
|
||
|
# test_interp_basic checks that we make a copy here
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self] if inplace else [self.copy()]
|
||
|
|
||
|
if self.is_object and self.ndim == 2 and self.shape[0] != 1 and axis == 0:
|
||
|
# split improves performance in ndarray.copy()
|
||
|
return self.split_and_operate(
|
||
|
type(self).interpolate,
|
||
|
method=method,
|
||
|
axis=axis,
|
||
|
index=index,
|
||
|
inplace=inplace,
|
||
|
limit=limit,
|
||
|
limit_direction=limit_direction,
|
||
|
limit_area=limit_area,
|
||
|
fill_value=fill_value,
|
||
|
downcast=downcast,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
refs = None
|
||
|
if inplace:
|
||
|
if using_cow and self.refs.has_reference():
|
||
|
data = self.values.copy()
|
||
|
else:
|
||
|
data = self.values
|
||
|
refs = self.refs
|
||
|
else:
|
||
|
data = self.values.copy()
|
||
|
data = cast(np.ndarray, data) # bc overridden by ExtensionBlock
|
||
|
|
||
|
missing.interpolate_array_2d(
|
||
|
data,
|
||
|
method=method,
|
||
|
axis=axis,
|
||
|
index=index,
|
||
|
limit=limit,
|
||
|
limit_direction=limit_direction,
|
||
|
limit_area=limit_area,
|
||
|
fill_value=fill_value,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
nb = self.make_block_same_class(data, refs=refs)
|
||
|
return nb._maybe_downcast([nb], downcast, using_cow)
|
||
|
|
||
|
def diff(self, n: int, axis: AxisInt = 1) -> list[Block]:
|
||
|
"""return block for the diff of the values"""
|
||
|
# only reached with ndim == 2 and axis == 1
|
||
|
new_values = algos.diff(self.values, n, axis=axis)
|
||
|
return [self.make_block(values=new_values)]
|
||
|
|
||
|
def shift(
|
||
|
self, periods: int, axis: AxisInt = 0, fill_value: Any = None
|
||
|
) -> list[Block]:
|
||
|
"""shift the block by periods, possibly upcast"""
|
||
|
# convert integer to float if necessary. need to do a lot more than
|
||
|
# that, handle boolean etc also
|
||
|
|
||
|
# Note: periods is never 0 here, as that is handled at the top of
|
||
|
# NDFrame.shift. If that ever changes, we can do a check for periods=0
|
||
|
# and possibly avoid coercing.
|
||
|
|
||
|
if not lib.is_scalar(fill_value) and self.dtype != _dtype_obj:
|
||
|
# with object dtype there is nothing to promote, and the user can
|
||
|
# pass pretty much any weird fill_value they like
|
||
|
# see test_shift_object_non_scalar_fill
|
||
|
raise ValueError("fill_value must be a scalar")
|
||
|
|
||
|
fill_value = self._standardize_fill_value(fill_value)
|
||
|
|
||
|
try:
|
||
|
# error: Argument 1 to "np_can_hold_element" has incompatible type
|
||
|
# "Union[dtype[Any], ExtensionDtype]"; expected "dtype[Any]"
|
||
|
casted = np_can_hold_element(
|
||
|
self.dtype, fill_value # type: ignore[arg-type]
|
||
|
)
|
||
|
except LossySetitemError:
|
||
|
nb = self.coerce_to_target_dtype(fill_value)
|
||
|
return nb.shift(periods, axis=axis, fill_value=fill_value)
|
||
|
|
||
|
else:
|
||
|
values = cast(np.ndarray, self.values)
|
||
|
new_values = shift(values, periods, axis, casted)
|
||
|
return [self.make_block(new_values)]
|
||
|
|
||
|
@final
|
||
|
def quantile(
|
||
|
self,
|
||
|
qs: Index, # with dtype float64
|
||
|
interpolation: QuantileInterpolation = "linear",
|
||
|
axis: AxisInt = 0,
|
||
|
) -> Block:
|
||
|
"""
|
||
|
compute the quantiles of the
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
qs : Index
|
||
|
The quantiles to be computed in float64.
|
||
|
interpolation : str, default 'linear'
|
||
|
Type of interpolation.
|
||
|
axis : int, default 0
|
||
|
Axis to compute.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Block
|
||
|
"""
|
||
|
# We should always have ndim == 2 because Series dispatches to DataFrame
|
||
|
assert self.ndim == 2
|
||
|
assert axis == 1 # only ever called this way
|
||
|
assert is_list_like(qs) # caller is responsible for this
|
||
|
|
||
|
result = quantile_compat(self.values, np.asarray(qs._values), interpolation)
|
||
|
# ensure_block_shape needed for cases where we start with EA and result
|
||
|
# is ndarray, e.g. IntegerArray, SparseArray
|
||
|
result = ensure_block_shape(result, ndim=2)
|
||
|
return new_block_2d(result, placement=self._mgr_locs)
|
||
|
|
||
|
def round(self, decimals: int, using_cow: bool = False) -> Block:
|
||
|
"""
|
||
|
Rounds the values.
|
||
|
If the block is not of an integer or float dtype, nothing happens.
|
||
|
This is consistent with DataFrame.round behavivor.
|
||
|
(Note: Series.round would raise)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
decimals: int,
|
||
|
Number of decimal places to round to.
|
||
|
Caller is responsible for validating this
|
||
|
using_cow: bool,
|
||
|
Whether Copy on Write is enabled right now
|
||
|
"""
|
||
|
if not self.is_numeric or self.is_bool:
|
||
|
return self.copy(deep=not using_cow)
|
||
|
refs = None
|
||
|
# TODO: round only defined on BaseMaskedArray
|
||
|
# Series also does this, so would need to fix both places
|
||
|
# error: Item "ExtensionArray" of "Union[ndarray[Any, Any], ExtensionArray]"
|
||
|
# has no attribute "round"
|
||
|
values = self.values.round(decimals) # type: ignore[union-attr]
|
||
|
if values is self.values:
|
||
|
refs = self.refs
|
||
|
if not using_cow:
|
||
|
# Normally would need to do this before, but
|
||
|
# numpy only returns same array when round operation
|
||
|
# is no-op
|
||
|
# https://github.com/numpy/numpy/blob/486878b37fc7439a3b2b87747f50db9b62fea8eb/numpy/core/src/multiarray/calculation.c#L625-L636
|
||
|
values = values.copy()
|
||
|
return self.make_block_same_class(values, refs=refs)
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Abstract Methods Overridden By EABackedBlock and NumpyBlock
|
||
|
|
||
|
def delete(self, loc) -> list[Block]:
|
||
|
"""Deletes the locs from the block.
|
||
|
|
||
|
We split the block to avoid copying the underlying data. We create new
|
||
|
blocks for every connected segment of the initial block that is not deleted.
|
||
|
The new blocks point to the initial array.
|
||
|
"""
|
||
|
if not is_list_like(loc):
|
||
|
loc = [loc]
|
||
|
|
||
|
if self.ndim == 1:
|
||
|
values = cast(np.ndarray, self.values)
|
||
|
values = np.delete(values, loc)
|
||
|
mgr_locs = self._mgr_locs.delete(loc)
|
||
|
return [type(self)(values, placement=mgr_locs, ndim=self.ndim)]
|
||
|
|
||
|
if np.max(loc) >= self.values.shape[0]:
|
||
|
raise IndexError
|
||
|
|
||
|
# Add one out-of-bounds indexer as maximum to collect
|
||
|
# all columns after our last indexer if any
|
||
|
loc = np.concatenate([loc, [self.values.shape[0]]])
|
||
|
mgr_locs_arr = self._mgr_locs.as_array
|
||
|
new_blocks: list[Block] = []
|
||
|
|
||
|
previous_loc = -1
|
||
|
# TODO(CoW): This is tricky, if parent block goes out of scope
|
||
|
# all split blocks are referencing each other even though they
|
||
|
# don't share data
|
||
|
refs = self.refs if self.refs.has_reference() else None
|
||
|
for idx in loc:
|
||
|
if idx == previous_loc + 1:
|
||
|
# There is no column between current and last idx
|
||
|
pass
|
||
|
else:
|
||
|
# No overload variant of "__getitem__" of "ExtensionArray" matches
|
||
|
# argument type "Tuple[slice, slice]"
|
||
|
values = self.values[previous_loc + 1 : idx, :] # type: ignore[call-overload] # noqa
|
||
|
locs = mgr_locs_arr[previous_loc + 1 : idx]
|
||
|
nb = type(self)(
|
||
|
values, placement=BlockPlacement(locs), ndim=self.ndim, refs=refs
|
||
|
)
|
||
|
new_blocks.append(nb)
|
||
|
|
||
|
previous_loc = idx
|
||
|
|
||
|
return new_blocks
|
||
|
|
||
|
@property
|
||
|
def is_view(self) -> bool:
|
||
|
"""return a boolean if I am possibly a view"""
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
@property
|
||
|
def array_values(self) -> ExtensionArray:
|
||
|
"""
|
||
|
The array that Series.array returns. Always an ExtensionArray.
|
||
|
"""
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
def get_values(self, dtype: DtypeObj | None = None) -> np.ndarray:
|
||
|
"""
|
||
|
return an internal format, currently just the ndarray
|
||
|
this is often overridden to handle to_dense like operations
|
||
|
"""
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
def values_for_json(self) -> np.ndarray:
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
|
||
|
class EABackedBlock(Block):
|
||
|
"""
|
||
|
Mixin for Block subclasses backed by ExtensionArray.
|
||
|
"""
|
||
|
|
||
|
values: ExtensionArray
|
||
|
|
||
|
def setitem(self, indexer, value, using_cow: bool = False):
|
||
|
"""
|
||
|
Attempt self.values[indexer] = value, possibly creating a new array.
|
||
|
|
||
|
This differs from Block.setitem by not allowing setitem to change
|
||
|
the dtype of the Block.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indexer : tuple, list-like, array-like, slice, int
|
||
|
The subset of self.values to set
|
||
|
value : object
|
||
|
The value being set
|
||
|
using_cow: bool, default False
|
||
|
Signaling if CoW is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Block
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`indexer` is a direct slice/positional indexer. `value` must
|
||
|
be a compatible shape.
|
||
|
"""
|
||
|
orig_indexer = indexer
|
||
|
orig_value = value
|
||
|
|
||
|
indexer = self._unwrap_setitem_indexer(indexer)
|
||
|
value = self._maybe_squeeze_arg(value)
|
||
|
|
||
|
values = self.values
|
||
|
if values.ndim == 2:
|
||
|
# TODO(GH#45419): string[pyarrow] tests break if we transpose
|
||
|
# unconditionally
|
||
|
values = values.T
|
||
|
check_setitem_lengths(indexer, value, values)
|
||
|
|
||
|
try:
|
||
|
values[indexer] = value
|
||
|
except (ValueError, TypeError) as err:
|
||
|
_catch_deprecated_value_error(err)
|
||
|
|
||
|
if is_interval_dtype(self.dtype):
|
||
|
# see TestSetitemFloatIntervalWithIntIntervalValues
|
||
|
nb = self.coerce_to_target_dtype(orig_value)
|
||
|
return nb.setitem(orig_indexer, orig_value)
|
||
|
|
||
|
elif isinstance(self, NDArrayBackedExtensionBlock):
|
||
|
nb = self.coerce_to_target_dtype(orig_value)
|
||
|
return nb.setitem(orig_indexer, orig_value)
|
||
|
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
def where(
|
||
|
self, other, cond, _downcast: str | bool = "infer", using_cow: bool = False
|
||
|
) -> list[Block]:
|
||
|
# _downcast private bc we only specify it when calling from fillna
|
||
|
arr = self.values.T
|
||
|
|
||
|
cond = extract_bool_array(cond)
|
||
|
|
||
|
orig_other = other
|
||
|
orig_cond = cond
|
||
|
other = self._maybe_squeeze_arg(other)
|
||
|
cond = self._maybe_squeeze_arg(cond)
|
||
|
|
||
|
if other is lib.no_default:
|
||
|
other = self.fill_value
|
||
|
|
||
|
icond, noop = validate_putmask(arr, ~cond)
|
||
|
if noop:
|
||
|
# GH#44181, GH#45135
|
||
|
# Avoid a) raising for Interval/PeriodDtype and b) unnecessary object upcast
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self.copy()]
|
||
|
|
||
|
try:
|
||
|
res_values = arr._where(cond, other).T
|
||
|
except (ValueError, TypeError) as err:
|
||
|
_catch_deprecated_value_error(err)
|
||
|
|
||
|
if self.ndim == 1 or self.shape[0] == 1:
|
||
|
if is_interval_dtype(self.dtype):
|
||
|
# TestSetitemFloatIntervalWithIntIntervalValues
|
||
|
blk = self.coerce_to_target_dtype(orig_other)
|
||
|
nbs = blk.where(orig_other, orig_cond, using_cow=using_cow)
|
||
|
return self._maybe_downcast(
|
||
|
nbs, downcast=_downcast, using_cow=using_cow
|
||
|
)
|
||
|
|
||
|
elif isinstance(self, NDArrayBackedExtensionBlock):
|
||
|
# NB: not (yet) the same as
|
||
|
# isinstance(values, NDArrayBackedExtensionArray)
|
||
|
blk = self.coerce_to_target_dtype(orig_other)
|
||
|
nbs = blk.where(orig_other, orig_cond, using_cow=using_cow)
|
||
|
return self._maybe_downcast(
|
||
|
nbs, downcast=_downcast, using_cow=using_cow
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
else:
|
||
|
# Same pattern we use in Block.putmask
|
||
|
is_array = isinstance(orig_other, (np.ndarray, ExtensionArray))
|
||
|
|
||
|
res_blocks = []
|
||
|
nbs = self._split()
|
||
|
for i, nb in enumerate(nbs):
|
||
|
n = orig_other
|
||
|
if is_array:
|
||
|
# we have a different value per-column
|
||
|
n = orig_other[:, i : i + 1]
|
||
|
|
||
|
submask = orig_cond[:, i : i + 1]
|
||
|
rbs = nb.where(n, submask, using_cow=using_cow)
|
||
|
res_blocks.extend(rbs)
|
||
|
return res_blocks
|
||
|
|
||
|
nb = self.make_block_same_class(res_values)
|
||
|
return [nb]
|
||
|
|
||
|
def putmask(self, mask, new, using_cow: bool = False) -> list[Block]:
|
||
|
"""
|
||
|
See Block.putmask.__doc__
|
||
|
"""
|
||
|
mask = extract_bool_array(mask)
|
||
|
if new is lib.no_default:
|
||
|
new = self.fill_value
|
||
|
|
||
|
values = self.values
|
||
|
if values.ndim == 2:
|
||
|
values = values.T
|
||
|
|
||
|
orig_new = new
|
||
|
orig_mask = mask
|
||
|
new = self._maybe_squeeze_arg(new)
|
||
|
mask = self._maybe_squeeze_arg(mask)
|
||
|
|
||
|
if not mask.any():
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self]
|
||
|
|
||
|
if using_cow and self.refs.has_reference():
|
||
|
values = values.copy()
|
||
|
self = self.make_block_same_class( # type: ignore[assignment]
|
||
|
values.T if values.ndim == 2 else values
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
# Caller is responsible for ensuring matching lengths
|
||
|
values._putmask(mask, new)
|
||
|
except (TypeError, ValueError) as err:
|
||
|
_catch_deprecated_value_error(err)
|
||
|
|
||
|
if self.ndim == 1 or self.shape[0] == 1:
|
||
|
if is_interval_dtype(self.dtype):
|
||
|
# Discussion about what we want to support in the general
|
||
|
# case GH#39584
|
||
|
blk = self.coerce_to_target_dtype(orig_new)
|
||
|
return blk.putmask(orig_mask, orig_new)
|
||
|
|
||
|
elif isinstance(self, NDArrayBackedExtensionBlock):
|
||
|
# NB: not (yet) the same as
|
||
|
# isinstance(values, NDArrayBackedExtensionArray)
|
||
|
blk = self.coerce_to_target_dtype(orig_new)
|
||
|
return blk.putmask(orig_mask, orig_new)
|
||
|
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
else:
|
||
|
# Same pattern we use in Block.putmask
|
||
|
is_array = isinstance(orig_new, (np.ndarray, ExtensionArray))
|
||
|
|
||
|
res_blocks = []
|
||
|
nbs = self._split()
|
||
|
for i, nb in enumerate(nbs):
|
||
|
n = orig_new
|
||
|
if is_array:
|
||
|
# we have a different value per-column
|
||
|
n = orig_new[:, i : i + 1]
|
||
|
|
||
|
submask = orig_mask[:, i : i + 1]
|
||
|
rbs = nb.putmask(submask, n)
|
||
|
res_blocks.extend(rbs)
|
||
|
return res_blocks
|
||
|
|
||
|
return [self]
|
||
|
|
||
|
def delete(self, loc) -> list[Block]:
|
||
|
# This will be unnecessary if/when __array_function__ is implemented
|
||
|
if self.ndim == 1:
|
||
|
values = self.values.delete(loc)
|
||
|
mgr_locs = self._mgr_locs.delete(loc)
|
||
|
return [type(self)(values, placement=mgr_locs, ndim=self.ndim)]
|
||
|
elif self.values.ndim == 1:
|
||
|
# We get here through to_stata
|
||
|
return []
|
||
|
return super().delete(loc)
|
||
|
|
||
|
@cache_readonly
|
||
|
def array_values(self) -> ExtensionArray:
|
||
|
return self.values
|
||
|
|
||
|
def get_values(self, dtype: DtypeObj | None = None) -> np.ndarray:
|
||
|
"""
|
||
|
return object dtype as boxed values, such as Timestamps/Timedelta
|
||
|
"""
|
||
|
values: ArrayLike = self.values
|
||
|
if dtype == _dtype_obj:
|
||
|
values = values.astype(object)
|
||
|
# TODO(EA2D): reshape not needed with 2D EAs
|
||
|
return np.asarray(values).reshape(self.shape)
|
||
|
|
||
|
def values_for_json(self) -> np.ndarray:
|
||
|
return np.asarray(self.values)
|
||
|
|
||
|
def interpolate(
|
||
|
self,
|
||
|
*,
|
||
|
method: FillnaOptions = "pad",
|
||
|
axis: int = 0,
|
||
|
inplace: bool = False,
|
||
|
limit: int | None = None,
|
||
|
fill_value=None,
|
||
|
using_cow: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
values = self.values
|
||
|
if values.ndim == 2 and axis == 0:
|
||
|
# NDArrayBackedExtensionArray.fillna assumes axis=1
|
||
|
new_values = values.T.fillna(value=fill_value, method=method, limit=limit).T
|
||
|
else:
|
||
|
new_values = values.fillna(value=fill_value, method=method, limit=limit)
|
||
|
return self.make_block_same_class(new_values)
|
||
|
|
||
|
|
||
|
class ExtensionBlock(libinternals.Block, EABackedBlock):
|
||
|
"""
|
||
|
Block for holding extension types.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This holds all 3rd-party extension array types. It's also the immediate
|
||
|
parent class for our internal extension types' blocks.
|
||
|
|
||
|
ExtensionArrays are limited to 1-D.
|
||
|
"""
|
||
|
|
||
|
_can_consolidate = False
|
||
|
_validate_ndim = False
|
||
|
is_extension = True
|
||
|
|
||
|
values: ExtensionArray
|
||
|
|
||
|
def fillna(
|
||
|
self,
|
||
|
value,
|
||
|
limit: int | None = None,
|
||
|
inplace: bool = False,
|
||
|
downcast=None,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
if is_interval_dtype(self.dtype):
|
||
|
# Block.fillna handles coercion (test_fillna_interval)
|
||
|
return super().fillna(
|
||
|
value=value,
|
||
|
limit=limit,
|
||
|
inplace=inplace,
|
||
|
downcast=downcast,
|
||
|
using_cow=using_cow,
|
||
|
)
|
||
|
if using_cow and self._can_hold_na and not self.values._hasna:
|
||
|
refs = self.refs
|
||
|
new_values = self.values
|
||
|
else:
|
||
|
refs = None
|
||
|
new_values = self.values.fillna(value=value, method=None, limit=limit)
|
||
|
nb = self.make_block_same_class(new_values, refs=refs)
|
||
|
return nb._maybe_downcast([nb], downcast, using_cow=using_cow)
|
||
|
|
||
|
@cache_readonly
|
||
|
def shape(self) -> Shape:
|
||
|
# TODO(EA2D): override unnecessary with 2D EAs
|
||
|
if self.ndim == 1:
|
||
|
return (len(self.values),)
|
||
|
return len(self._mgr_locs), len(self.values)
|
||
|
|
||
|
def iget(self, i: int | tuple[int, int] | tuple[slice, int]):
|
||
|
# In the case where we have a tuple[slice, int], the slice will always
|
||
|
# be slice(None)
|
||
|
# We _could_ make the annotation more specific, but mypy would
|
||
|
# complain about override mismatch:
|
||
|
# Literal[0] | tuple[Literal[0], int] | tuple[slice, int]
|
||
|
|
||
|
# Note: only reached with self.ndim == 2
|
||
|
|
||
|
if isinstance(i, tuple):
|
||
|
# TODO(EA2D): unnecessary with 2D EAs
|
||
|
col, loc = i
|
||
|
if not com.is_null_slice(col) and col != 0:
|
||
|
raise IndexError(f"{self} only contains one item")
|
||
|
if isinstance(col, slice):
|
||
|
# the is_null_slice check above assures that col is slice(None)
|
||
|
# so what we want is a view on all our columns and row loc
|
||
|
if loc < 0:
|
||
|
loc += len(self.values)
|
||
|
# Note: loc:loc+1 vs [[loc]] makes a difference when called
|
||
|
# from fast_xs because we want to get a view back.
|
||
|
return self.values[loc : loc + 1]
|
||
|
return self.values[loc]
|
||
|
else:
|
||
|
if i != 0:
|
||
|
raise IndexError(f"{self} only contains one item")
|
||
|
return self.values
|
||
|
|
||
|
def set_inplace(self, locs, values: ArrayLike, copy: bool = False) -> None:
|
||
|
# When an ndarray, we should have locs.tolist() == [0]
|
||
|
# When a BlockPlacement we should have list(locs) == [0]
|
||
|
if copy:
|
||
|
self.values = self.values.copy()
|
||
|
self.values[:] = values
|
||
|
|
||
|
def _maybe_squeeze_arg(self, arg):
|
||
|
"""
|
||
|
If necessary, squeeze a (N, 1) ndarray to (N,)
|
||
|
"""
|
||
|
# e.g. if we are passed a 2D mask for putmask
|
||
|
if (
|
||
|
isinstance(arg, (np.ndarray, ExtensionArray))
|
||
|
and arg.ndim == self.values.ndim + 1
|
||
|
):
|
||
|
# TODO(EA2D): unnecessary with 2D EAs
|
||
|
assert arg.shape[1] == 1
|
||
|
# error: No overload variant of "__getitem__" of "ExtensionArray"
|
||
|
# matches argument type "Tuple[slice, int]"
|
||
|
arg = arg[:, 0] # type: ignore[call-overload]
|
||
|
elif isinstance(arg, ABCDataFrame):
|
||
|
# 2022-01-06 only reached for setitem
|
||
|
# TODO: should we avoid getting here with DataFrame?
|
||
|
assert arg.shape[1] == 1
|
||
|
arg = arg._ixs(0, axis=1)._values
|
||
|
|
||
|
return arg
|
||
|
|
||
|
def _unwrap_setitem_indexer(self, indexer):
|
||
|
"""
|
||
|
Adapt a 2D-indexer to our 1D values.
|
||
|
|
||
|
This is intended for 'setitem', not 'iget' or '_slice'.
|
||
|
"""
|
||
|
# TODO: ATM this doesn't work for iget/_slice, can we change that?
|
||
|
|
||
|
if isinstance(indexer, tuple) and len(indexer) == 2:
|
||
|
# TODO(EA2D): not needed with 2D EAs
|
||
|
# Should never have length > 2. Caller is responsible for checking.
|
||
|
# Length 1 is reached vis setitem_single_block and setitem_single_column
|
||
|
# each of which pass indexer=(pi,)
|
||
|
if all(isinstance(x, np.ndarray) and x.ndim == 2 for x in indexer):
|
||
|
# GH#44703 went through indexing.maybe_convert_ix
|
||
|
first, second = indexer
|
||
|
if not (
|
||
|
second.size == 1 and (second == 0).all() and first.shape[1] == 1
|
||
|
):
|
||
|
raise NotImplementedError(
|
||
|
"This should not be reached. Please report a bug at "
|
||
|
"github.com/pandas-dev/pandas/"
|
||
|
)
|
||
|
indexer = first[:, 0]
|
||
|
|
||
|
elif lib.is_integer(indexer[1]) and indexer[1] == 0:
|
||
|
# reached via setitem_single_block passing the whole indexer
|
||
|
indexer = indexer[0]
|
||
|
|
||
|
elif com.is_null_slice(indexer[1]):
|
||
|
indexer = indexer[0]
|
||
|
|
||
|
elif is_list_like(indexer[1]) and indexer[1][0] == 0:
|
||
|
indexer = indexer[0]
|
||
|
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"This should not be reached. Please report a bug at "
|
||
|
"github.com/pandas-dev/pandas/"
|
||
|
)
|
||
|
return indexer
|
||
|
|
||
|
@property
|
||
|
def is_view(self) -> bool:
|
||
|
"""Extension arrays are never treated as views."""
|
||
|
return False
|
||
|
|
||
|
@cache_readonly
|
||
|
def is_numeric(self):
|
||
|
return self.values.dtype._is_numeric
|
||
|
|
||
|
def _slice(
|
||
|
self, slicer: slice | npt.NDArray[np.bool_] | npt.NDArray[np.intp]
|
||
|
) -> ExtensionArray:
|
||
|
"""
|
||
|
Return a slice of my values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
slicer : slice, ndarray[int], or ndarray[bool]
|
||
|
Valid (non-reducing) indexer for self.values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ExtensionArray
|
||
|
"""
|
||
|
# Notes: ndarray[bool] is only reachable when via getitem_mgr, which
|
||
|
# is only for Series, i.e. self.ndim == 1.
|
||
|
|
||
|
# return same dims as we currently have
|
||
|
if self.ndim == 2:
|
||
|
# reached via getitem_block via _slice_take_blocks_ax0
|
||
|
# TODO(EA2D): won't be necessary with 2D EAs
|
||
|
|
||
|
if not isinstance(slicer, slice):
|
||
|
raise AssertionError(
|
||
|
"invalid slicing for a 1-ndim ExtensionArray", slicer
|
||
|
)
|
||
|
# GH#32959 only full-slicers along fake-dim0 are valid
|
||
|
# TODO(EA2D): won't be necessary with 2D EAs
|
||
|
# range(1) instead of self._mgr_locs to avoid exception on [::-1]
|
||
|
# see test_iloc_getitem_slice_negative_step_ea_block
|
||
|
new_locs = range(1)[slicer]
|
||
|
if not len(new_locs):
|
||
|
raise AssertionError(
|
||
|
"invalid slicing for a 1-ndim ExtensionArray", slicer
|
||
|
)
|
||
|
slicer = slice(None)
|
||
|
|
||
|
return self.values[slicer]
|
||
|
|
||
|
@final
|
||
|
def getitem_block_index(self, slicer: slice) -> ExtensionBlock:
|
||
|
"""
|
||
|
Perform __getitem__-like specialized to slicing along index.
|
||
|
"""
|
||
|
# GH#42787 in principle this is equivalent to values[..., slicer], but we don't
|
||
|
# require subclasses of ExtensionArray to support that form (for now).
|
||
|
new_values = self.values[slicer]
|
||
|
return type(self)(new_values, self._mgr_locs, ndim=self.ndim, refs=self.refs)
|
||
|
|
||
|
def diff(self, n: int, axis: AxisInt = 1) -> list[Block]:
|
||
|
# only reached with ndim == 2 and axis == 1
|
||
|
# TODO(EA2D): Can share with NDArrayBackedExtensionBlock
|
||
|
new_values = algos.diff(self.values, n, axis=0)
|
||
|
return [self.make_block(values=new_values)]
|
||
|
|
||
|
def shift(
|
||
|
self, periods: int, axis: AxisInt = 0, fill_value: Any = None
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
Shift the block by `periods`.
|
||
|
|
||
|
Dispatches to underlying ExtensionArray and re-boxes in an
|
||
|
ExtensionBlock.
|
||
|
"""
|
||
|
new_values = self.values.shift(periods=periods, fill_value=fill_value)
|
||
|
return [self.make_block_same_class(new_values)]
|
||
|
|
||
|
def _unstack(
|
||
|
self,
|
||
|
unstacker,
|
||
|
fill_value,
|
||
|
new_placement: npt.NDArray[np.intp],
|
||
|
needs_masking: npt.NDArray[np.bool_],
|
||
|
):
|
||
|
# ExtensionArray-safe unstack.
|
||
|
# We override ObjectBlock._unstack, which unstacks directly on the
|
||
|
# values of the array. For EA-backed blocks, this would require
|
||
|
# converting to a 2-D ndarray of objects.
|
||
|
# Instead, we unstack an ndarray of integer positions, followed by
|
||
|
# a `take` on the actual values.
|
||
|
|
||
|
# Caller is responsible for ensuring self.shape[-1] == len(unstacker.index)
|
||
|
new_values, mask = unstacker.arange_result
|
||
|
|
||
|
# Note: these next two lines ensure that
|
||
|
# mask.sum() == sum(len(nb.mgr_locs) for nb in blocks)
|
||
|
# which the calling function needs in order to pass verify_integrity=False
|
||
|
# to the BlockManager constructor
|
||
|
new_values = new_values.T[mask]
|
||
|
new_placement = new_placement[mask]
|
||
|
|
||
|
# needs_masking[i] calculated once in BlockManager.unstack tells
|
||
|
# us if there are any -1s in the relevant indices. When False,
|
||
|
# that allows us to go through a faster path in 'take', among
|
||
|
# other things avoiding e.g. Categorical._validate_scalar.
|
||
|
blocks = [
|
||
|
# TODO: could cast to object depending on fill_value?
|
||
|
type(self)(
|
||
|
self.values.take(
|
||
|
indices, allow_fill=needs_masking[i], fill_value=fill_value
|
||
|
),
|
||
|
BlockPlacement(place),
|
||
|
ndim=2,
|
||
|
)
|
||
|
for i, (indices, place) in enumerate(zip(new_values, new_placement))
|
||
|
]
|
||
|
return blocks, mask
|
||
|
|
||
|
|
||
|
class NumpyBlock(libinternals.NumpyBlock, Block):
|
||
|
values: np.ndarray
|
||
|
|
||
|
@property
|
||
|
def is_view(self) -> bool:
|
||
|
"""return a boolean if I am possibly a view"""
|
||
|
return self.values.base is not None
|
||
|
|
||
|
@property
|
||
|
def array_values(self) -> ExtensionArray:
|
||
|
return PandasArray(self.values)
|
||
|
|
||
|
def get_values(self, dtype: DtypeObj | None = None) -> np.ndarray:
|
||
|
if dtype == _dtype_obj:
|
||
|
return self.values.astype(_dtype_obj)
|
||
|
return self.values
|
||
|
|
||
|
def values_for_json(self) -> np.ndarray:
|
||
|
return self.values
|
||
|
|
||
|
|
||
|
class NumericBlock(NumpyBlock):
|
||
|
__slots__ = ()
|
||
|
is_numeric = True
|
||
|
|
||
|
|
||
|
class NDArrayBackedExtensionBlock(libinternals.NDArrayBackedBlock, EABackedBlock):
|
||
|
"""
|
||
|
Block backed by an NDArrayBackedExtensionArray
|
||
|
"""
|
||
|
|
||
|
values: NDArrayBackedExtensionArray
|
||
|
|
||
|
# error: Signature of "is_extension" incompatible with supertype "Block"
|
||
|
@cache_readonly
|
||
|
def is_extension(self) -> bool: # type: ignore[override]
|
||
|
# i.e. datetime64tz, PeriodDtype
|
||
|
return not isinstance(self.dtype, np.dtype)
|
||
|
|
||
|
@property
|
||
|
def is_view(self) -> bool:
|
||
|
"""return a boolean if I am possibly a view"""
|
||
|
# check the ndarray values of the DatetimeIndex values
|
||
|
return self.values._ndarray.base is not None
|
||
|
|
||
|
def diff(self, n: int, axis: AxisInt = 0) -> list[Block]:
|
||
|
"""
|
||
|
1st discrete difference.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Number of periods to diff.
|
||
|
axis : int, default 0
|
||
|
Axis to diff upon.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A list with a new Block.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The arguments here are mimicking shift so they are called correctly
|
||
|
by apply.
|
||
|
"""
|
||
|
# only reached with ndim == 2 and axis == 1
|
||
|
values = self.values
|
||
|
|
||
|
new_values = values - values.shift(n, axis=axis)
|
||
|
return [self.make_block(new_values)]
|
||
|
|
||
|
def shift(
|
||
|
self, periods: int, axis: AxisInt = 0, fill_value: Any = None
|
||
|
) -> list[Block]:
|
||
|
values = self.values
|
||
|
new_values = values.shift(periods, fill_value=fill_value, axis=axis)
|
||
|
return [self.make_block_same_class(new_values)]
|
||
|
|
||
|
|
||
|
def _catch_deprecated_value_error(err: Exception) -> None:
|
||
|
"""
|
||
|
We catch ValueError for now, but only a specific one raised by DatetimeArray
|
||
|
which will no longer be raised in version.2.0.
|
||
|
"""
|
||
|
if isinstance(err, ValueError):
|
||
|
if isinstance(err, IncompatibleFrequency):
|
||
|
pass
|
||
|
elif "'value.closed' is" in str(err):
|
||
|
# IntervalDtype mismatched 'closed'
|
||
|
pass
|
||
|
|
||
|
|
||
|
class DatetimeLikeBlock(NDArrayBackedExtensionBlock):
|
||
|
"""Block for datetime64[ns], timedelta64[ns]."""
|
||
|
|
||
|
__slots__ = ()
|
||
|
is_numeric = False
|
||
|
values: DatetimeArray | TimedeltaArray
|
||
|
|
||
|
def values_for_json(self) -> np.ndarray:
|
||
|
return self.values._ndarray
|
||
|
|
||
|
def interpolate(
|
||
|
self,
|
||
|
*,
|
||
|
method: FillnaOptions = "pad",
|
||
|
index: Index | None = None,
|
||
|
axis: int = 0,
|
||
|
inplace: bool = False,
|
||
|
limit: int | None = None,
|
||
|
fill_value=None,
|
||
|
using_cow: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
values = self.values
|
||
|
|
||
|
# error: Non-overlapping equality check (left operand type:
|
||
|
# "Literal['backfill', 'bfill', 'ffill', 'pad']", right operand type:
|
||
|
# "Literal['linear']") [comparison-overlap]
|
||
|
if method == "linear": # type: ignore[comparison-overlap]
|
||
|
# TODO: GH#50950 implement for arbitrary EAs
|
||
|
refs = None
|
||
|
if using_cow:
|
||
|
if inplace and not self.refs.has_reference():
|
||
|
data_out = values._ndarray
|
||
|
refs = self.refs
|
||
|
else:
|
||
|
data_out = values._ndarray.copy()
|
||
|
else:
|
||
|
data_out = values._ndarray if inplace else values._ndarray.copy()
|
||
|
missing.interpolate_array_2d(
|
||
|
data_out, method=method, limit=limit, index=index, axis=axis
|
||
|
)
|
||
|
new_values = type(values)._simple_new(data_out, dtype=values.dtype)
|
||
|
return self.make_block_same_class(new_values, refs=refs)
|
||
|
|
||
|
elif values.ndim == 2 and axis == 0:
|
||
|
# NDArrayBackedExtensionArray.fillna assumes axis=1
|
||
|
new_values = values.T.fillna(value=fill_value, method=method, limit=limit).T
|
||
|
else:
|
||
|
new_values = values.fillna(value=fill_value, method=method, limit=limit)
|
||
|
return self.make_block_same_class(new_values)
|
||
|
|
||
|
|
||
|
class DatetimeTZBlock(DatetimeLikeBlock):
|
||
|
"""implement a datetime64 block with a tz attribute"""
|
||
|
|
||
|
values: DatetimeArray
|
||
|
|
||
|
__slots__ = ()
|
||
|
is_extension = True
|
||
|
_validate_ndim = True
|
||
|
_can_consolidate = False
|
||
|
|
||
|
# Don't use values_for_json from DatetimeLikeBlock since it is
|
||
|
# an invalid optimization here(drop the tz)
|
||
|
values_for_json = NDArrayBackedExtensionBlock.values_for_json
|
||
|
|
||
|
|
||
|
class ObjectBlock(NumpyBlock):
|
||
|
__slots__ = ()
|
||
|
is_object = True
|
||
|
|
||
|
@maybe_split
|
||
|
def convert(
|
||
|
self,
|
||
|
*,
|
||
|
copy: bool = True,
|
||
|
using_cow: bool = False,
|
||
|
) -> list[Block]:
|
||
|
"""
|
||
|
attempt to cast any object types to better types return a copy of
|
||
|
the block (if copy = True) by definition we ARE an ObjectBlock!!!!!
|
||
|
"""
|
||
|
if self.dtype != _dtype_obj:
|
||
|
# GH#50067 this should be impossible in ObjectBlock, but until
|
||
|
# that is fixed, we short-circuit here.
|
||
|
if using_cow:
|
||
|
return [self.copy(deep=False)]
|
||
|
return [self]
|
||
|
|
||
|
values = self.values
|
||
|
if values.ndim == 2:
|
||
|
# maybe_split ensures we only get here with values.shape[0] == 1,
|
||
|
# avoid doing .ravel as that might make a copy
|
||
|
values = values[0]
|
||
|
|
||
|
res_values = lib.maybe_convert_objects(
|
||
|
values,
|
||
|
convert_datetime=True,
|
||
|
convert_timedelta=True,
|
||
|
convert_period=True,
|
||
|
convert_interval=True,
|
||
|
)
|
||
|
refs = None
|
||
|
if copy and res_values is values:
|
||
|
res_values = values.copy()
|
||
|
elif res_values is values and using_cow:
|
||
|
refs = self.refs
|
||
|
|
||
|
res_values = ensure_block_shape(res_values, self.ndim)
|
||
|
return [self.make_block(res_values, refs=refs)]
|
||
|
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Constructor Helpers
|
||
|
|
||
|
|
||
|
def maybe_coerce_values(values: ArrayLike) -> ArrayLike:
|
||
|
"""
|
||
|
Input validation for values passed to __init__. Ensure that
|
||
|
any datetime64/timedelta64 dtypes are in nanoseconds. Ensure
|
||
|
that we do not have string dtypes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : np.ndarray or ExtensionArray
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
values : np.ndarray or ExtensionArray
|
||
|
"""
|
||
|
# Caller is responsible for ensuring PandasArray is already extracted.
|
||
|
|
||
|
if isinstance(values, np.ndarray):
|
||
|
values = ensure_wrapped_if_datetimelike(values)
|
||
|
|
||
|
if issubclass(values.dtype.type, str):
|
||
|
values = np.array(values, dtype=object)
|
||
|
|
||
|
if isinstance(values, (DatetimeArray, TimedeltaArray)) and values.freq is not None:
|
||
|
# freq is only stored in DatetimeIndex/TimedeltaIndex, not in Series/DataFrame
|
||
|
values = values._with_freq(None)
|
||
|
|
||
|
return values
|
||
|
|
||
|
|
||
|
def get_block_type(dtype: DtypeObj):
|
||
|
"""
|
||
|
Find the appropriate Block subclass to use for the given values and dtype.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype : numpy or pandas dtype
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cls : class, subclass of Block
|
||
|
"""
|
||
|
# We use kind checks because it is much more performant
|
||
|
# than is_foo_dtype
|
||
|
kind = dtype.kind
|
||
|
|
||
|
cls: type[Block]
|
||
|
|
||
|
if isinstance(dtype, SparseDtype):
|
||
|
# Need this first(ish) so that Sparse[datetime] is sparse
|
||
|
cls = ExtensionBlock
|
||
|
elif isinstance(dtype, DatetimeTZDtype):
|
||
|
cls = DatetimeTZBlock
|
||
|
elif isinstance(dtype, PeriodDtype):
|
||
|
cls = NDArrayBackedExtensionBlock
|
||
|
elif isinstance(dtype, ExtensionDtype):
|
||
|
# Note: need to be sure PandasArray is unwrapped before we get here
|
||
|
cls = ExtensionBlock
|
||
|
|
||
|
elif kind in ["M", "m"]:
|
||
|
cls = DatetimeLikeBlock
|
||
|
elif kind in ["f", "c", "i", "u", "b"]:
|
||
|
cls = NumericBlock
|
||
|
else:
|
||
|
cls = ObjectBlock
|
||
|
return cls
|
||
|
|
||
|
|
||
|
def new_block_2d(
|
||
|
values: ArrayLike, placement: BlockPlacement, refs: BlockValuesRefs | None = None
|
||
|
):
|
||
|
# new_block specialized to case with
|
||
|
# ndim=2
|
||
|
# isinstance(placement, BlockPlacement)
|
||
|
# check_ndim/ensure_block_shape already checked
|
||
|
klass = get_block_type(values.dtype)
|
||
|
|
||
|
values = maybe_coerce_values(values)
|
||
|
return klass(values, ndim=2, placement=placement, refs=refs)
|
||
|
|
||
|
|
||
|
def new_block(
|
||
|
values, placement, *, ndim: int, refs: BlockValuesRefs | None = None
|
||
|
) -> Block:
|
||
|
# caller is responsible for ensuring values is NOT a PandasArray
|
||
|
|
||
|
if not isinstance(placement, BlockPlacement):
|
||
|
placement = BlockPlacement(placement)
|
||
|
|
||
|
check_ndim(values, placement, ndim)
|
||
|
|
||
|
klass = get_block_type(values.dtype)
|
||
|
|
||
|
values = maybe_coerce_values(values)
|
||
|
return klass(values, ndim=ndim, placement=placement, refs=refs)
|
||
|
|
||
|
|
||
|
def check_ndim(values, placement: BlockPlacement, ndim: int) -> None:
|
||
|
"""
|
||
|
ndim inference and validation.
|
||
|
|
||
|
Validates that values.ndim and ndim are consistent.
|
||
|
Validates that len(values) and len(placement) are consistent.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : array-like
|
||
|
placement : BlockPlacement
|
||
|
ndim : int
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError : the number of dimensions do not match
|
||
|
"""
|
||
|
|
||
|
if values.ndim > ndim:
|
||
|
# Check for both np.ndarray and ExtensionArray
|
||
|
raise ValueError(
|
||
|
"Wrong number of dimensions. "
|
||
|
f"values.ndim > ndim [{values.ndim} > {ndim}]"
|
||
|
)
|
||
|
|
||
|
if not is_1d_only_ea_dtype(values.dtype):
|
||
|
# TODO(EA2D): special case not needed with 2D EAs
|
||
|
if values.ndim != ndim:
|
||
|
raise ValueError(
|
||
|
"Wrong number of dimensions. "
|
||
|
f"values.ndim != ndim [{values.ndim} != {ndim}]"
|
||
|
)
|
||
|
if len(placement) != len(values):
|
||
|
raise ValueError(
|
||
|
f"Wrong number of items passed {len(values)}, "
|
||
|
f"placement implies {len(placement)}"
|
||
|
)
|
||
|
elif ndim == 2 and len(placement) != 1:
|
||
|
# TODO(EA2D): special case unnecessary with 2D EAs
|
||
|
raise ValueError("need to split")
|
||
|
|
||
|
|
||
|
def extract_pandas_array(
|
||
|
values: np.ndarray | ExtensionArray, dtype: DtypeObj | None, ndim: int
|
||
|
) -> tuple[np.ndarray | ExtensionArray, DtypeObj | None]:
|
||
|
"""
|
||
|
Ensure that we don't allow PandasArray / PandasDtype in internals.
|
||
|
"""
|
||
|
# For now, blocks should be backed by ndarrays when possible.
|
||
|
if isinstance(values, ABCPandasArray):
|
||
|
values = values.to_numpy()
|
||
|
if ndim and ndim > 1:
|
||
|
# TODO(EA2D): special case not needed with 2D EAs
|
||
|
values = np.atleast_2d(values)
|
||
|
|
||
|
if isinstance(dtype, PandasDtype):
|
||
|
dtype = dtype.numpy_dtype
|
||
|
|
||
|
return values, dtype
|
||
|
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def extend_blocks(result, blocks=None) -> list[Block]:
|
||
|
"""return a new extended blocks, given the result"""
|
||
|
if blocks is None:
|
||
|
blocks = []
|
||
|
if isinstance(result, list):
|
||
|
for r in result:
|
||
|
if isinstance(r, list):
|
||
|
blocks.extend(r)
|
||
|
else:
|
||
|
blocks.append(r)
|
||
|
else:
|
||
|
assert isinstance(result, Block), type(result)
|
||
|
blocks.append(result)
|
||
|
return blocks
|
||
|
|
||
|
|
||
|
def ensure_block_shape(values: ArrayLike, ndim: int = 1) -> ArrayLike:
|
||
|
"""
|
||
|
Reshape if possible to have values.ndim == ndim.
|
||
|
"""
|
||
|
|
||
|
if values.ndim < ndim:
|
||
|
if not is_1d_only_ea_dtype(values.dtype):
|
||
|
# TODO(EA2D): https://github.com/pandas-dev/pandas/issues/23023
|
||
|
# block.shape is incorrect for "2D" ExtensionArrays
|
||
|
# We can't, and don't need to, reshape.
|
||
|
values = cast("np.ndarray | DatetimeArray | TimedeltaArray", values)
|
||
|
values = values.reshape(1, -1)
|
||
|
|
||
|
return values
|
||
|
|
||
|
|
||
|
def to_native_types(
|
||
|
values: ArrayLike,
|
||
|
*,
|
||
|
na_rep: str = "nan",
|
||
|
quoting=None,
|
||
|
float_format=None,
|
||
|
decimal: str = ".",
|
||
|
**kwargs,
|
||
|
) -> np.ndarray:
|
||
|
"""convert to our native types format"""
|
||
|
if isinstance(values, Categorical) and values.categories.dtype.kind in "Mm":
|
||
|
# GH#40754 Convert categorical datetimes to datetime array
|
||
|
values = algos.take_nd(
|
||
|
values.categories._values,
|
||
|
ensure_platform_int(values._codes),
|
||
|
fill_value=na_rep,
|
||
|
)
|
||
|
|
||
|
values = ensure_wrapped_if_datetimelike(values)
|
||
|
|
||
|
if isinstance(values, (DatetimeArray, TimedeltaArray)):
|
||
|
if values.ndim == 1:
|
||
|
result = values._format_native_types(na_rep=na_rep, **kwargs)
|
||
|
result = result.astype(object, copy=False)
|
||
|
return result
|
||
|
|
||
|
# GH#21734 Process every column separately, they might have different formats
|
||
|
results_converted = []
|
||
|
for i in range(len(values)):
|
||
|
result = values[i, :]._format_native_types(na_rep=na_rep, **kwargs)
|
||
|
results_converted.append(result.astype(object, copy=False))
|
||
|
return np.vstack(results_converted)
|
||
|
|
||
|
elif values.dtype.kind == "f" and not is_sparse(values):
|
||
|
# see GH#13418: no special formatting is desired at the
|
||
|
# output (important for appropriate 'quoting' behaviour),
|
||
|
# so do not pass it through the FloatArrayFormatter
|
||
|
if float_format is None and decimal == ".":
|
||
|
mask = isna(values)
|
||
|
|
||
|
if not quoting:
|
||
|
values = values.astype(str)
|
||
|
else:
|
||
|
values = np.array(values, dtype="object")
|
||
|
|
||
|
values[mask] = na_rep
|
||
|
values = values.astype(object, copy=False)
|
||
|
return values
|
||
|
|
||
|
from pandas.io.formats.format import FloatArrayFormatter
|
||
|
|
||
|
formatter = FloatArrayFormatter(
|
||
|
values,
|
||
|
na_rep=na_rep,
|
||
|
float_format=float_format,
|
||
|
decimal=decimal,
|
||
|
quoting=quoting,
|
||
|
fixed_width=False,
|
||
|
)
|
||
|
res = formatter.get_result_as_array()
|
||
|
res = res.astype(object, copy=False)
|
||
|
return res
|
||
|
|
||
|
elif isinstance(values, ExtensionArray):
|
||
|
mask = isna(values)
|
||
|
|
||
|
new_values = np.asarray(values.astype(object))
|
||
|
new_values[mask] = na_rep
|
||
|
return new_values
|
||
|
|
||
|
else:
|
||
|
mask = isna(values)
|
||
|
itemsize = writers.word_len(na_rep)
|
||
|
|
||
|
if values.dtype != _dtype_obj and not quoting and itemsize:
|
||
|
values = values.astype(str)
|
||
|
if values.dtype.itemsize / np.dtype("U1").itemsize < itemsize:
|
||
|
# enlarge for the na_rep
|
||
|
values = values.astype(f"<U{itemsize}")
|
||
|
else:
|
||
|
values = np.array(values, dtype="object")
|
||
|
|
||
|
values[mask] = na_rep
|
||
|
values = values.astype(object, copy=False)
|
||
|
return values
|
||
|
|
||
|
|
||
|
def external_values(values: ArrayLike) -> ArrayLike:
|
||
|
"""
|
||
|
The array that Series.values returns (public attribute).
|
||
|
|
||
|
This has some historical constraints, and is overridden in block
|
||
|
subclasses to return the correct array (e.g. period returns
|
||
|
object ndarray and datetimetz a datetime64[ns] ndarray instead of
|
||
|
proper extension array).
|
||
|
"""
|
||
|
if isinstance(values, (PeriodArray, IntervalArray)):
|
||
|
return values.astype(object)
|
||
|
elif isinstance(values, (DatetimeArray, TimedeltaArray)):
|
||
|
# NB: for datetime64tz this is different from np.asarray(values), since
|
||
|
# that returns an object-dtype ndarray of Timestamps.
|
||
|
# Avoid raising in .astype in casting from dt64tz to dt64
|
||
|
values = values._ndarray
|
||
|
|
||
|
if isinstance(values, np.ndarray) and using_copy_on_write():
|
||
|
values = values.view()
|
||
|
values.flags.writeable = False
|
||
|
|
||
|
# TODO(CoW) we should also mark our ExtensionArrays as read-only
|
||
|
|
||
|
return values
|