Inzynierka/Lib/site-packages/pandas/io/feather_format.py

163 lines
4.8 KiB
Python
Raw Permalink Normal View History

2023-06-02 12:51:02 +02:00
""" feather-format compat """
from __future__ import annotations
from typing import (
Hashable,
Sequence,
)
from pandas._libs import lib
from pandas._typing import (
DtypeBackend,
FilePath,
ReadBuffer,
StorageOptions,
WriteBuffer,
)
from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import doc
from pandas.util._validators import check_dtype_backend
import pandas as pd
from pandas.core.api import (
DataFrame,
RangeIndex,
)
from pandas.core.shared_docs import _shared_docs
from pandas.io.common import get_handle
@doc(storage_options=_shared_docs["storage_options"])
def to_feather(
df: DataFrame,
path: FilePath | WriteBuffer[bytes],
storage_options: StorageOptions = None,
**kwargs,
) -> None:
"""
Write a DataFrame to the binary Feather format.
Parameters
----------
df : DataFrame
path : str, path object, or file-like object
{storage_options}
.. versionadded:: 1.2.0
**kwargs :
Additional keywords passed to `pyarrow.feather.write_feather`.
.. versionadded:: 1.1.0
"""
import_optional_dependency("pyarrow")
from pyarrow import feather
if not isinstance(df, DataFrame):
raise ValueError("feather only support IO with DataFrames")
valid_types = {"string", "unicode"}
# validate index
# --------------
# validate that we have only a default index
# raise on anything else as we don't serialize the index
if not df.index.dtype == "int64":
typ = type(df.index)
raise ValueError(
f"feather does not support serializing {typ} "
"for the index; you can .reset_index() to make the index into column(s)"
)
if not df.index.equals(RangeIndex.from_range(range(len(df)))):
raise ValueError(
"feather does not support serializing a non-default index for the index; "
"you can .reset_index() to make the index into column(s)"
)
if df.index.name is not None:
raise ValueError(
"feather does not serialize index meta-data on a default index"
)
# validate columns
# ----------------
# must have value column names (strings only)
if df.columns.inferred_type not in valid_types:
raise ValueError("feather must have string column names")
with get_handle(
path, "wb", storage_options=storage_options, is_text=False
) as handles:
feather.write_feather(df, handles.handle, **kwargs)
@doc(storage_options=_shared_docs["storage_options"])
def read_feather(
path: FilePath | ReadBuffer[bytes],
columns: Sequence[Hashable] | None = None,
use_threads: bool = True,
storage_options: StorageOptions = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
):
"""
Load a feather-format object from the file path.
Parameters
----------
path : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``read()`` function. The string could be a URL.
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: ``file://localhost/path/to/table.feather``.
columns : sequence, default None
If not provided, all columns are read.
use_threads : bool, default True
Whether to parallelize reading using multiple threads.
{storage_options}
.. versionadded:: 1.2.0
dtype_backend : {{"numpy_nullable", "pyarrow"}}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
Returns
-------
type of object stored in file
"""
import_optional_dependency("pyarrow")
from pyarrow import feather
check_dtype_backend(dtype_backend)
with get_handle(
path, "rb", storage_options=storage_options, is_text=False
) as handles:
if dtype_backend is lib.no_default:
return feather.read_feather(
handles.handle, columns=columns, use_threads=bool(use_threads)
)
pa_table = feather.read_table(
handles.handle, columns=columns, use_threads=bool(use_threads)
)
if dtype_backend == "numpy_nullable":
from pandas.io._util import _arrow_dtype_mapping
return pa_table.to_pandas(types_mapper=_arrow_dtype_mapping().get)
elif dtype_backend == "pyarrow":
return pa_table.to_pandas(types_mapper=pd.ArrowDtype)