Inzynierka/Lib/site-packages/pandas/tests/extension/test_integer.py

295 lines
7.9 KiB
Python
Raw Permalink Normal View History

2023-06-02 12:51:02 +02:00
"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import numpy as np
import pytest
from pandas.compat import (
IS64,
is_platform_windows,
)
import pandas as pd
import pandas._testing as tm
from pandas.api.types import (
is_extension_array_dtype,
is_integer_dtype,
)
from pandas.core.arrays.integer import (
Int8Dtype,
Int16Dtype,
Int32Dtype,
Int64Dtype,
UInt8Dtype,
UInt16Dtype,
UInt32Dtype,
UInt64Dtype,
)
from pandas.tests.extension import base
def make_data():
return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100]
@pytest.fixture(
params=[
Int8Dtype,
Int16Dtype,
Int32Dtype,
Int64Dtype,
UInt8Dtype,
UInt16Dtype,
UInt32Dtype,
UInt64Dtype,
]
)
def dtype(request):
return request.param()
@pytest.fixture
def data(dtype):
return pd.array(make_data(), dtype=dtype)
@pytest.fixture
def data_for_twos(dtype):
return pd.array(np.ones(100) * 2, dtype=dtype)
@pytest.fixture
def data_missing(dtype):
return pd.array([pd.NA, 1], dtype=dtype)
@pytest.fixture
def data_for_sorting(dtype):
return pd.array([1, 2, 0], dtype=dtype)
@pytest.fixture
def data_missing_for_sorting(dtype):
return pd.array([1, pd.NA, 0], dtype=dtype)
@pytest.fixture
def na_cmp():
# we are pd.NA
return lambda x, y: x is pd.NA and y is pd.NA
@pytest.fixture
def na_value():
return pd.NA
@pytest.fixture
def data_for_grouping(dtype):
b = 1
a = 0
c = 2
na = pd.NA
return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
class TestDtype(base.BaseDtypeTests):
pass
class TestArithmeticOps(base.BaseArithmeticOpsTests):
def check_opname(self, s, op_name, other, exc=None):
# overwriting to indicate ops don't raise an error
super().check_opname(s, op_name, other, exc=None)
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
sdtype = tm.get_dtype(s)
if (
hasattr(other, "dtype")
and not is_extension_array_dtype(other.dtype)
and is_integer_dtype(other.dtype)
and sdtype.is_unsigned_integer
):
# TODO: comment below is inaccurate; other can be int8, int16, ...
# and the trouble is that e.g. if s is UInt8 and other is int8,
# then result is UInt16
# other is np.int64 and would therefore always result in
# upcasting, so keeping other as same numpy_dtype
other = other.astype(sdtype.numpy_dtype)
result = op(s, other)
expected = self._combine(s, other, op)
if op_name in ("__rtruediv__", "__truediv__", "__div__"):
expected = expected.fillna(np.nan).astype("Float64")
else:
# combine method result in 'biggest' (int64) dtype
expected = expected.astype(sdtype)
self.assert_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def _check_divmod_op(self, s, op, other, exc=None):
super()._check_divmod_op(s, op, other, None)
class TestComparisonOps(base.BaseComparisonOpsTests):
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
result = op(s, other)
# Override to do the astype to boolean
expected = s.combine(other, op).astype("boolean")
self.assert_series_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def check_opname(self, s, op_name, other, exc=None):
super().check_opname(s, op_name, other, exc=None)
def _compare_other(self, s, data, op, other):
op_name = f"__{op.__name__}__"
self.check_opname(s, op_name, other)
class TestInterface(base.BaseInterfaceTests):
pass
class TestConstructors(base.BaseConstructorsTests):
pass
class TestReshaping(base.BaseReshapingTests):
pass
# for test_concat_mixed_dtypes test
# concat of an Integer and Int coerces to object dtype
# TODO(jreback) once integrated this would
class TestGetitem(base.BaseGetitemTests):
pass
class TestSetitem(base.BaseSetitemTests):
pass
class TestIndex(base.BaseIndexTests):
pass
class TestMissing(base.BaseMissingTests):
pass
class TestMethods(base.BaseMethodsTests):
_combine_le_expected_dtype = object # TODO: can we make this boolean?
class TestCasting(base.BaseCastingTests):
pass
class TestGroupby(base.BaseGroupbyTests):
pass
class TestNumericReduce(base.BaseNumericReduceTests):
def check_reduce(self, s, op_name, skipna):
# overwrite to ensure pd.NA is tested instead of np.nan
# https://github.com/pandas-dev/pandas/issues/30958
if op_name == "count":
result = getattr(s, op_name)()
expected = getattr(s.dropna().astype("int64"), op_name)()
else:
result = getattr(s, op_name)(skipna=skipna)
expected = getattr(s.dropna().astype("int64"), op_name)(skipna=skipna)
if not skipna and s.isna().any():
expected = pd.NA
tm.assert_almost_equal(result, expected)
@pytest.mark.skip(reason="Tested in tests/reductions/test_reductions.py")
class TestBooleanReduce(base.BaseBooleanReduceTests):
pass
class TestAccumulation(base.BaseAccumulateTests):
def check_accumulate(self, s, op_name, skipna):
# overwrite to ensure pd.NA is tested instead of np.nan
# https://github.com/pandas-dev/pandas/issues/30958
length = 64
if not IS64 or is_platform_windows():
if not s.dtype.itemsize == 8:
length = 32
if s.dtype.name.startswith("U"):
expected_dtype = f"UInt{length}"
else:
expected_dtype = f"Int{length}"
if op_name == "cumsum":
result = getattr(s, op_name)(skipna=skipna)
expected = pd.Series(
pd.array(
getattr(s.astype("float64"), op_name)(skipna=skipna),
dtype=expected_dtype,
)
)
tm.assert_series_equal(result, expected)
elif op_name in ["cummax", "cummin"]:
result = getattr(s, op_name)(skipna=skipna)
expected = pd.Series(
pd.array(
getattr(s.astype("float64"), op_name)(skipna=skipna),
dtype=s.dtype,
)
)
tm.assert_series_equal(result, expected)
elif op_name == "cumprod":
result = getattr(s[:12], op_name)(skipna=skipna)
expected = pd.Series(
pd.array(
getattr(s[:12].astype("float64"), op_name)(skipna=skipna),
dtype=expected_dtype,
)
)
tm.assert_series_equal(result, expected)
else:
raise NotImplementedError(f"{op_name} not supported")
@pytest.mark.parametrize("skipna", [True, False])
def test_accumulate_series_raises(self, data, all_numeric_accumulations, skipna):
pass
class TestPrinting(base.BasePrintingTests):
pass
class TestParsing(base.BaseParsingTests):
pass
class Test2DCompat(base.Dim2CompatTests):
pass