Inzynierka/Lib/site-packages/pandas/tests/groupby/test_nth.py

825 lines
25 KiB
Python
Raw Permalink Normal View History

2023-06-02 12:51:02 +02:00
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
isna,
)
import pandas._testing as tm
def test_first_last_nth(df):
# tests for first / last / nth
grouped = df.groupby("A")
first = grouped.first()
expected = df.loc[[1, 0], ["B", "C", "D"]]
expected.index = Index(["bar", "foo"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(first, expected)
nth = grouped.nth(0)
expected = df.loc[[0, 1]]
tm.assert_frame_equal(nth, expected)
last = grouped.last()
expected = df.loc[[5, 7], ["B", "C", "D"]]
expected.index = Index(["bar", "foo"], name="A")
tm.assert_frame_equal(last, expected)
nth = grouped.nth(-1)
expected = df.iloc[[5, 7]]
tm.assert_frame_equal(nth, expected)
nth = grouped.nth(1)
expected = df.iloc[[2, 3]]
tm.assert_frame_equal(nth, expected)
# it works!
grouped["B"].first()
grouped["B"].last()
grouped["B"].nth(0)
df.loc[df["A"] == "foo", "B"] = np.nan
assert isna(grouped["B"].first()["foo"])
assert isna(grouped["B"].last()["foo"])
assert isna(grouped["B"].nth(0).iloc[0])
# v0.14.0 whatsnew
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
result = g.first()
expected = df.iloc[[1, 2]].set_index("A")
tm.assert_frame_equal(result, expected)
expected = df.iloc[[1, 2]]
result = g.nth(0, dropna="any")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last_with_na_object(method, nulls_fixture):
# https://github.com/pandas-dev/pandas/issues/32123
groups = DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 3, nulls_fixture]}).groupby("a")
result = getattr(groups, method)()
if method == "first":
values = [1, 3]
else:
values = [2, 3]
values = np.array(values, dtype=result["b"].dtype)
idx = Index([1, 2], name="a")
expected = DataFrame({"b": values}, index=idx)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("index", [0, -1])
def test_nth_with_na_object(index, nulls_fixture):
# https://github.com/pandas-dev/pandas/issues/32123
df = DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 3, nulls_fixture]})
groups = df.groupby("a")
result = groups.nth(index)
expected = df.iloc[[0, 2]] if index == 0 else df.iloc[[1, 3]]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last_with_None(method):
# https://github.com/pandas-dev/pandas/issues/32800
# None should be preserved as object dtype
df = DataFrame.from_dict({"id": ["a"], "value": [None]})
groups = df.groupby("id", as_index=False)
result = getattr(groups, method)()
tm.assert_frame_equal(result, df)
@pytest.mark.parametrize("method", ["first", "last"])
@pytest.mark.parametrize(
"df, expected",
[
(
DataFrame({"id": "a", "value": [None, "foo", np.nan]}),
DataFrame({"value": ["foo"]}, index=Index(["a"], name="id")),
),
(
DataFrame({"id": "a", "value": [np.nan]}, dtype=object),
DataFrame({"value": [None]}, index=Index(["a"], name="id")),
),
],
)
def test_first_last_with_None_expanded(method, df, expected):
# GH 32800, 38286
result = getattr(df.groupby("id"), method)()
tm.assert_frame_equal(result, expected)
def test_first_last_nth_dtypes(df_mixed_floats):
df = df_mixed_floats.copy()
df["E"] = True
df["F"] = 1
# tests for first / last / nth
grouped = df.groupby("A")
first = grouped.first()
expected = df.loc[[1, 0], ["B", "C", "D", "E", "F"]]
expected.index = Index(["bar", "foo"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(first, expected)
last = grouped.last()
expected = df.loc[[5, 7], ["B", "C", "D", "E", "F"]]
expected.index = Index(["bar", "foo"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(last, expected)
nth = grouped.nth(1)
expected = df.iloc[[2, 3]]
tm.assert_frame_equal(nth, expected)
# GH 2763, first/last shifting dtypes
idx = list(range(10))
idx.append(9)
s = Series(data=range(11), index=idx, name="IntCol")
assert s.dtype == "int64"
f = s.groupby(level=0).first()
assert f.dtype == "int64"
def test_first_last_nth_nan_dtype():
# GH 33591
df = DataFrame({"data": ["A"], "nans": Series([np.nan], dtype=object)})
grouped = df.groupby("data")
expected = df.set_index("data").nans
tm.assert_series_equal(grouped.nans.first(), expected)
tm.assert_series_equal(grouped.nans.last(), expected)
expected = df.nans
tm.assert_series_equal(grouped.nans.nth(-1), expected)
tm.assert_series_equal(grouped.nans.nth(0), expected)
def test_first_strings_timestamps():
# GH 11244
test = DataFrame(
{
Timestamp("2012-01-01 00:00:00"): ["a", "b"],
Timestamp("2012-01-02 00:00:00"): ["c", "d"],
"name": ["e", "e"],
"aaaa": ["f", "g"],
}
)
result = test.groupby("name").first()
expected = DataFrame(
[["a", "c", "f"]],
columns=Index([Timestamp("2012-01-01"), Timestamp("2012-01-02"), "aaaa"]),
index=Index(["e"], name="name"),
)
tm.assert_frame_equal(result, expected)
def test_nth():
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
tm.assert_frame_equal(g.nth(0), df.iloc[[0, 2]])
tm.assert_frame_equal(g.nth(1), df.iloc[[1]])
tm.assert_frame_equal(g.nth(2), df.loc[[]])
tm.assert_frame_equal(g.nth(-1), df.iloc[[1, 2]])
tm.assert_frame_equal(g.nth(-2), df.iloc[[0]])
tm.assert_frame_equal(g.nth(-3), df.loc[[]])
tm.assert_series_equal(g.B.nth(0), df.B.iloc[[0, 2]])
tm.assert_series_equal(g.B.nth(1), df.B.iloc[[1]])
tm.assert_frame_equal(g[["B"]].nth(0), df[["B"]].iloc[[0, 2]])
tm.assert_frame_equal(g.nth(0, dropna="any"), df.iloc[[1, 2]])
tm.assert_frame_equal(g.nth(-1, dropna="any"), df.iloc[[1, 2]])
tm.assert_frame_equal(g.nth(7, dropna="any"), df.iloc[:0])
tm.assert_frame_equal(g.nth(2, dropna="any"), df.iloc[:0])
# out of bounds, regression from 0.13.1
# GH 6621
df = DataFrame(
{
"color": {0: "green", 1: "green", 2: "red", 3: "red", 4: "red"},
"food": {0: "ham", 1: "eggs", 2: "eggs", 3: "ham", 4: "pork"},
"two": {
0: 1.5456590000000001,
1: -0.070345000000000005,
2: -2.4004539999999999,
3: 0.46206000000000003,
4: 0.52350799999999997,
},
"one": {
0: 0.56573799999999996,
1: -0.9742360000000001,
2: 1.033801,
3: -0.78543499999999999,
4: 0.70422799999999997,
},
}
).set_index(["color", "food"])
result = df.groupby(level=0, as_index=False).nth(2)
expected = df.iloc[[-1]]
tm.assert_frame_equal(result, expected)
result = df.groupby(level=0, as_index=False).nth(3)
expected = df.loc[[]]
tm.assert_frame_equal(result, expected)
# GH 7559
# from the vbench
df = DataFrame(np.random.randint(1, 10, (100, 2)), dtype="int64")
s = df[1]
g = df[0]
expected = s.groupby(g).first()
expected2 = s.groupby(g).apply(lambda x: x.iloc[0])
tm.assert_series_equal(expected2, expected, check_names=False)
assert expected.name == 1
assert expected2.name == 1
# validate first
v = s[g == 1].iloc[0]
assert expected.iloc[0] == v
assert expected2.iloc[0] == v
with pytest.raises(ValueError, match="For a DataFrame"):
s.groupby(g, sort=False).nth(0, dropna=True)
# doc example
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
result = g.B.nth(0, dropna="all")
expected = df.B.iloc[[1, 2]]
tm.assert_series_equal(result, expected)
# test multiple nth values
df = DataFrame([[1, np.nan], [1, 3], [1, 4], [5, 6], [5, 7]], columns=["A", "B"])
g = df.groupby("A")
tm.assert_frame_equal(g.nth(0), df.iloc[[0, 3]])
tm.assert_frame_equal(g.nth([0]), df.iloc[[0, 3]])
tm.assert_frame_equal(g.nth([0, 1]), df.iloc[[0, 1, 3, 4]])
tm.assert_frame_equal(g.nth([0, -1]), df.iloc[[0, 2, 3, 4]])
tm.assert_frame_equal(g.nth([0, 1, 2]), df.iloc[[0, 1, 2, 3, 4]])
tm.assert_frame_equal(g.nth([0, 1, -1]), df.iloc[[0, 1, 2, 3, 4]])
tm.assert_frame_equal(g.nth([2]), df.iloc[[2]])
tm.assert_frame_equal(g.nth([3, 4]), df.loc[[]])
business_dates = pd.date_range(start="4/1/2014", end="6/30/2014", freq="B")
df = DataFrame(1, index=business_dates, columns=["a", "b"])
# get the first, fourth and last two business days for each month
key = [df.index.year, df.index.month]
result = df.groupby(key, as_index=False).nth([0, 3, -2, -1])
expected_dates = pd.to_datetime(
[
"2014/4/1",
"2014/4/4",
"2014/4/29",
"2014/4/30",
"2014/5/1",
"2014/5/6",
"2014/5/29",
"2014/5/30",
"2014/6/2",
"2014/6/5",
"2014/6/27",
"2014/6/30",
]
)
expected = DataFrame(1, columns=["a", "b"], index=expected_dates)
tm.assert_frame_equal(result, expected)
def test_nth_multi_grouper(three_group):
# PR 9090, related to issue 8979
# test nth on multiple groupers
grouped = three_group.groupby(["A", "B"])
result = grouped.nth(0)
expected = three_group.iloc[[0, 3, 4, 7]]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data, expected_first, expected_last",
[
(
{
"id": ["A"],
"time": Timestamp("2012-02-01 14:00:00", tz="US/Central"),
"foo": [1],
},
{
"id": ["A"],
"time": Timestamp("2012-02-01 14:00:00", tz="US/Central"),
"foo": [1],
},
{
"id": ["A"],
"time": Timestamp("2012-02-01 14:00:00", tz="US/Central"),
"foo": [1],
},
),
(
{
"id": ["A", "B", "A"],
"time": [
Timestamp("2012-01-01 13:00:00", tz="America/New_York"),
Timestamp("2012-02-01 14:00:00", tz="US/Central"),
Timestamp("2012-03-01 12:00:00", tz="Europe/London"),
],
"foo": [1, 2, 3],
},
{
"id": ["A", "B"],
"time": [
Timestamp("2012-01-01 13:00:00", tz="America/New_York"),
Timestamp("2012-02-01 14:00:00", tz="US/Central"),
],
"foo": [1, 2],
},
{
"id": ["A", "B"],
"time": [
Timestamp("2012-03-01 12:00:00", tz="Europe/London"),
Timestamp("2012-02-01 14:00:00", tz="US/Central"),
],
"foo": [3, 2],
},
),
],
)
def test_first_last_tz(data, expected_first, expected_last):
# GH15884
# Test that the timezone is retained when calling first
# or last on groupby with as_index=False
df = DataFrame(data)
result = df.groupby("id", as_index=False).first()
expected = DataFrame(expected_first)
cols = ["id", "time", "foo"]
tm.assert_frame_equal(result[cols], expected[cols])
result = df.groupby("id", as_index=False)["time"].first()
tm.assert_frame_equal(result, expected[["id", "time"]])
result = df.groupby("id", as_index=False).last()
expected = DataFrame(expected_last)
cols = ["id", "time", "foo"]
tm.assert_frame_equal(result[cols], expected[cols])
result = df.groupby("id", as_index=False)["time"].last()
tm.assert_frame_equal(result, expected[["id", "time"]])
@pytest.mark.parametrize(
"method, ts, alpha",
[
["first", Timestamp("2013-01-01", tz="US/Eastern"), "a"],
["last", Timestamp("2013-01-02", tz="US/Eastern"), "b"],
],
)
def test_first_last_tz_multi_column(method, ts, alpha):
# GH 21603
category_string = Series(list("abc")).astype("category")
df = DataFrame(
{
"group": [1, 1, 2],
"category_string": category_string,
"datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)
result = getattr(df.groupby("group"), method)()
expected = DataFrame(
{
"category_string": pd.Categorical(
[alpha, "c"], dtype=category_string.dtype
),
"datetimetz": [ts, Timestamp("2013-01-03", tz="US/Eastern")],
},
index=Index([1, 2], name="group"),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
pd.array([True, False], dtype="boolean"),
pd.array([1, 2], dtype="Int64"),
pd.to_datetime(["2020-01-01", "2020-02-01"]),
pd.to_timedelta([1, 2], unit="D"),
],
)
@pytest.mark.parametrize("function", ["first", "last", "min", "max"])
def test_first_last_extension_array_keeps_dtype(values, function):
# https://github.com/pandas-dev/pandas/issues/33071
# https://github.com/pandas-dev/pandas/issues/32194
df = DataFrame({"a": [1, 2], "b": values})
grouped = df.groupby("a")
idx = Index([1, 2], name="a")
expected_series = Series(values, name="b", index=idx)
expected_frame = DataFrame({"b": values}, index=idx)
result_series = getattr(grouped["b"], function)()
tm.assert_series_equal(result_series, expected_series)
result_frame = grouped.agg({"b": function})
tm.assert_frame_equal(result_frame, expected_frame)
def test_nth_multi_index_as_expected():
# PR 9090, related to issue 8979
# test nth on MultiIndex
three_group = DataFrame(
{
"A": [
"foo",
"foo",
"foo",
"foo",
"bar",
"bar",
"bar",
"bar",
"foo",
"foo",
"foo",
],
"B": [
"one",
"one",
"one",
"two",
"one",
"one",
"one",
"two",
"two",
"two",
"one",
],
"C": [
"dull",
"dull",
"shiny",
"dull",
"dull",
"shiny",
"shiny",
"dull",
"shiny",
"shiny",
"shiny",
],
}
)
grouped = three_group.groupby(["A", "B"])
result = grouped.nth(0)
expected = three_group.iloc[[0, 3, 4, 7]]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"op, n, expected_rows",
[
("head", -1, [0]),
("head", 0, []),
("head", 1, [0, 2]),
("head", 7, [0, 1, 2]),
("tail", -1, [1]),
("tail", 0, []),
("tail", 1, [1, 2]),
("tail", 7, [0, 1, 2]),
],
)
@pytest.mark.parametrize("columns", [None, [], ["A"], ["B"], ["A", "B"]])
@pytest.mark.parametrize("as_index", [True, False])
def test_groupby_head_tail(op, n, expected_rows, columns, as_index):
df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A", as_index=as_index)
expected = df.iloc[expected_rows]
if columns is not None:
g = g[columns]
expected = expected[columns]
result = getattr(g, op)(n)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"op, n, expected_cols",
[
("head", -1, [0]),
("head", 0, []),
("head", 1, [0, 2]),
("head", 7, [0, 1, 2]),
("tail", -1, [1]),
("tail", 0, []),
("tail", 1, [1, 2]),
("tail", 7, [0, 1, 2]),
],
)
def test_groupby_head_tail_axis_1(op, n, expected_cols):
# GH 9772
df = DataFrame(
[[1, 2, 3], [1, 4, 5], [2, 6, 7], [3, 8, 9]], columns=["A", "B", "C"]
)
g = df.groupby([0, 0, 1], axis=1)
expected = df.iloc[:, expected_cols]
result = getattr(g, op)(n)
tm.assert_frame_equal(result, expected)
def test_group_selection_cache():
# GH 12839 nth, head, and tail should return same result consistently
df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])
expected = df.iloc[[0, 2]]
g = df.groupby("A")
result1 = g.head(n=2)
result2 = g.nth(0)
tm.assert_frame_equal(result1, df)
tm.assert_frame_equal(result2, expected)
g = df.groupby("A")
result1 = g.tail(n=2)
result2 = g.nth(0)
tm.assert_frame_equal(result1, df)
tm.assert_frame_equal(result2, expected)
g = df.groupby("A")
result1 = g.nth(0)
result2 = g.head(n=2)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, df)
g = df.groupby("A")
result1 = g.nth(0)
result2 = g.tail(n=2)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, df)
def test_nth_empty():
# GH 16064
df = DataFrame(index=[0], columns=["a", "b", "c"])
result = df.groupby("a").nth(10)
expected = df.iloc[:0]
tm.assert_frame_equal(result, expected)
result = df.groupby(["a", "b"]).nth(10)
expected = df.iloc[:0]
tm.assert_frame_equal(result, expected)
def test_nth_column_order():
# GH 20760
# Check that nth preserves column order
df = DataFrame(
[[1, "b", 100], [1, "a", 50], [1, "a", np.nan], [2, "c", 200], [2, "d", 150]],
columns=["A", "C", "B"],
)
result = df.groupby("A").nth(0)
expected = df.iloc[[0, 3]]
tm.assert_frame_equal(result, expected)
result = df.groupby("A").nth(-1, dropna="any")
expected = df.iloc[[1, 4]]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dropna", [None, "any", "all"])
def test_nth_nan_in_grouper(dropna):
# GH 26011
df = DataFrame(
{
"a": [np.nan, "a", np.nan, "b", np.nan],
"b": [0, 2, 4, 6, 8],
"c": [1, 3, 5, 7, 9],
}
)
result = df.groupby("a").nth(0, dropna=dropna)
expected = df.iloc[[1, 3]]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dropna", [None, "any", "all"])
def test_nth_nan_in_grouper_series(dropna):
# GH 26454
df = DataFrame(
{
"a": [np.nan, "a", np.nan, "b", np.nan],
"b": [0, 2, 4, 6, 8],
}
)
result = df.groupby("a")["b"].nth(0, dropna=dropna)
expected = df["b"].iloc[[1, 3]]
tm.assert_series_equal(result, expected)
def test_first_categorical_and_datetime_data_nat():
# GH 20520
df = DataFrame(
{
"group": ["first", "first", "second", "third", "third"],
"time": 5 * [np.datetime64("NaT")],
"categories": Series(["a", "b", "c", "a", "b"], dtype="category"),
}
)
result = df.groupby("group").first()
expected = DataFrame(
{
"time": 3 * [np.datetime64("NaT")],
"categories": Series(["a", "c", "a"]).astype(
pd.CategoricalDtype(["a", "b", "c"])
),
}
)
expected.index = Index(["first", "second", "third"], name="group")
tm.assert_frame_equal(result, expected)
def test_first_multi_key_groupby_categorical():
# GH 22512
df = DataFrame(
{
"A": [1, 1, 1, 2, 2],
"B": [100, 100, 200, 100, 100],
"C": ["apple", "orange", "mango", "mango", "orange"],
"D": ["jupiter", "mercury", "mars", "venus", "venus"],
}
)
df = df.astype({"D": "category"})
result = df.groupby(by=["A", "B"]).first()
expected = DataFrame(
{
"C": ["apple", "mango", "mango"],
"D": Series(["jupiter", "mars", "venus"]).astype(
pd.CategoricalDtype(["jupiter", "mars", "mercury", "venus"])
),
}
)
expected.index = MultiIndex.from_tuples(
[(1, 100), (1, 200), (2, 100)], names=["A", "B"]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("method", ["first", "last", "nth"])
def test_groupby_last_first_nth_with_none(method, nulls_fixture):
# GH29645
expected = Series(["y"])
data = Series(
[nulls_fixture, nulls_fixture, nulls_fixture, "y", nulls_fixture],
index=[0, 0, 0, 0, 0],
).groupby(level=0)
if method == "nth":
result = getattr(data, method)(3)
else:
result = getattr(data, method)()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"arg, expected_rows",
[
[slice(None, 3, 2), [0, 1, 4, 5]],
[slice(None, -2), [0, 2, 5]],
[[slice(None, 2), slice(-2, None)], [0, 1, 2, 3, 4, 6, 7]],
[[0, 1, slice(-2, None)], [0, 1, 2, 3, 4, 6, 7]],
],
)
def test_slice(slice_test_df, slice_test_grouped, arg, expected_rows):
# Test slices GH #42947
result = slice_test_grouped.nth[arg]
equivalent = slice_test_grouped.nth(arg)
expected = slice_test_df.iloc[expected_rows]
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(equivalent, expected)
def test_nth_indexed(slice_test_df, slice_test_grouped):
# Test index notation GH #44688
result = slice_test_grouped.nth[0, 1, -2:]
equivalent = slice_test_grouped.nth([0, 1, slice(-2, None)])
expected = slice_test_df.iloc[[0, 1, 2, 3, 4, 6, 7]]
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(equivalent, expected)
def test_invalid_argument(slice_test_grouped):
# Test for error on invalid argument
with pytest.raises(TypeError, match="Invalid index"):
slice_test_grouped.nth(3.14)
def test_negative_step(slice_test_grouped):
# Test for error on negative slice step
with pytest.raises(ValueError, match="Invalid step"):
slice_test_grouped.nth(slice(None, None, -1))
def test_np_ints(slice_test_df, slice_test_grouped):
# Test np ints work
result = slice_test_grouped.nth(np.array([0, 1]))
expected = slice_test_df.iloc[[0, 1, 2, 3, 4]]
tm.assert_frame_equal(result, expected)
def test_groupby_nth_with_column_axis():
# GH43926
df = DataFrame(
[
[4, 5, 6],
[8, 8, 7],
],
index=["z", "y"],
columns=["C", "B", "A"],
)
result = df.groupby(df.iloc[1], axis=1).nth(0)
expected = df.iloc[:, [0, 2]]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"start, stop, expected_values, expected_columns",
[
(None, None, [0, 1, 2, 3, 4], list("ABCDE")),
(None, 1, [0, 3], list("AD")),
(None, 9, [0, 1, 2, 3, 4], list("ABCDE")),
(None, -1, [0, 1, 3], list("ABD")),
(1, None, [1, 2, 4], list("BCE")),
(1, -1, [1], list("B")),
(-1, None, [2, 4], list("CE")),
(-1, 2, [4], list("E")),
],
)
@pytest.mark.parametrize("method", ["call", "index"])
def test_nth_slices_with_column_axis(
start, stop, expected_values, expected_columns, method
):
df = DataFrame([range(5)], columns=[list("ABCDE")])
gb = df.groupby([5, 5, 5, 6, 6], axis=1)
result = {
"call": lambda start, stop: gb.nth(slice(start, stop)),
"index": lambda start, stop: gb.nth[start:stop],
}[method](start, stop)
expected = DataFrame([expected_values], columns=[expected_columns])
tm.assert_frame_equal(result, expected)
@pytest.mark.filterwarnings(
"ignore:invalid value encountered in remainder:RuntimeWarning"
)
def test_head_tail_dropna_true():
# GH#45089
df = DataFrame(
[["a", "z"], ["b", np.nan], ["c", np.nan], ["c", np.nan]], columns=["X", "Y"]
)
expected = DataFrame([["a", "z"]], columns=["X", "Y"])
result = df.groupby(["X", "Y"]).head(n=1)
tm.assert_frame_equal(result, expected)
result = df.groupby(["X", "Y"]).tail(n=1)
tm.assert_frame_equal(result, expected)
result = df.groupby(["X", "Y"]).nth(n=0)
tm.assert_frame_equal(result, expected)
def test_head_tail_dropna_false():
# GH#45089
df = DataFrame([["a", "z"], ["b", np.nan], ["c", np.nan]], columns=["X", "Y"])
expected = DataFrame([["a", "z"], ["b", np.nan], ["c", np.nan]], columns=["X", "Y"])
result = df.groupby(["X", "Y"], dropna=False).head(n=1)
tm.assert_frame_equal(result, expected)
result = df.groupby(["X", "Y"], dropna=False).tail(n=1)
tm.assert_frame_equal(result, expected)
result = df.groupby(["X", "Y"], dropna=False).nth(n=0)
tm.assert_frame_equal(result, expected)