1702 lines
61 KiB
Python
1702 lines
61 KiB
Python
|
"""Array printing function
|
||
|
|
||
|
$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $
|
||
|
|
||
|
"""
|
||
|
__all__ = ["array2string", "array_str", "array_repr", "set_string_function",
|
||
|
"set_printoptions", "get_printoptions", "printoptions",
|
||
|
"format_float_positional", "format_float_scientific"]
|
||
|
__docformat__ = 'restructuredtext'
|
||
|
|
||
|
#
|
||
|
# Written by Konrad Hinsen <hinsenk@ere.umontreal.ca>
|
||
|
# last revision: 1996-3-13
|
||
|
# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
|
||
|
# and by Perry Greenfield 2000-4-1 for numarray
|
||
|
# and by Travis Oliphant 2005-8-22 for numpy
|
||
|
|
||
|
|
||
|
# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy
|
||
|
# scalars but for different purposes. scalartypes.c.src has str/reprs for when
|
||
|
# the scalar is printed on its own, while arrayprint.py has strs for when
|
||
|
# scalars are printed inside an ndarray. Only the latter strs are currently
|
||
|
# user-customizable.
|
||
|
|
||
|
import functools
|
||
|
import numbers
|
||
|
import sys
|
||
|
try:
|
||
|
from _thread import get_ident
|
||
|
except ImportError:
|
||
|
from _dummy_thread import get_ident
|
||
|
|
||
|
import numpy as np
|
||
|
from . import numerictypes as _nt
|
||
|
from .umath import absolute, isinf, isfinite, isnat
|
||
|
from . import multiarray
|
||
|
from .multiarray import (array, dragon4_positional, dragon4_scientific,
|
||
|
datetime_as_string, datetime_data, ndarray,
|
||
|
set_legacy_print_mode)
|
||
|
from .fromnumeric import any
|
||
|
from .numeric import concatenate, asarray, errstate
|
||
|
from .numerictypes import (longlong, intc, int_, float_, complex_, bool_,
|
||
|
flexible)
|
||
|
from .overrides import array_function_dispatch, set_module
|
||
|
import operator
|
||
|
import warnings
|
||
|
import contextlib
|
||
|
|
||
|
_format_options = {
|
||
|
'edgeitems': 3, # repr N leading and trailing items of each dimension
|
||
|
'threshold': 1000, # total items > triggers array summarization
|
||
|
'floatmode': 'maxprec',
|
||
|
'precision': 8, # precision of floating point representations
|
||
|
'suppress': False, # suppress printing small floating values in exp format
|
||
|
'linewidth': 75,
|
||
|
'nanstr': 'nan',
|
||
|
'infstr': 'inf',
|
||
|
'sign': '-',
|
||
|
'formatter': None,
|
||
|
# Internally stored as an int to simplify comparisons; converted from/to
|
||
|
# str/False on the way in/out.
|
||
|
'legacy': sys.maxsize}
|
||
|
|
||
|
def _make_options_dict(precision=None, threshold=None, edgeitems=None,
|
||
|
linewidth=None, suppress=None, nanstr=None, infstr=None,
|
||
|
sign=None, formatter=None, floatmode=None, legacy=None):
|
||
|
"""
|
||
|
Make a dictionary out of the non-None arguments, plus conversion of
|
||
|
*legacy* and sanity checks.
|
||
|
"""
|
||
|
|
||
|
options = {k: v for k, v in locals().items() if v is not None}
|
||
|
|
||
|
if suppress is not None:
|
||
|
options['suppress'] = bool(suppress)
|
||
|
|
||
|
modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal']
|
||
|
if floatmode not in modes + [None]:
|
||
|
raise ValueError("floatmode option must be one of " +
|
||
|
", ".join('"{}"'.format(m) for m in modes))
|
||
|
|
||
|
if sign not in [None, '-', '+', ' ']:
|
||
|
raise ValueError("sign option must be one of ' ', '+', or '-'")
|
||
|
|
||
|
if legacy == False:
|
||
|
options['legacy'] = sys.maxsize
|
||
|
elif legacy == '1.13':
|
||
|
options['legacy'] = 113
|
||
|
elif legacy == '1.21':
|
||
|
options['legacy'] = 121
|
||
|
elif legacy is None:
|
||
|
pass # OK, do nothing.
|
||
|
else:
|
||
|
warnings.warn(
|
||
|
"legacy printing option can currently only be '1.13', '1.21', or "
|
||
|
"`False`", stacklevel=3)
|
||
|
|
||
|
if threshold is not None:
|
||
|
# forbid the bad threshold arg suggested by stack overflow, gh-12351
|
||
|
if not isinstance(threshold, numbers.Number):
|
||
|
raise TypeError("threshold must be numeric")
|
||
|
if np.isnan(threshold):
|
||
|
raise ValueError("threshold must be non-NAN, try "
|
||
|
"sys.maxsize for untruncated representation")
|
||
|
|
||
|
if precision is not None:
|
||
|
# forbid the bad precision arg as suggested by issue #18254
|
||
|
try:
|
||
|
options['precision'] = operator.index(precision)
|
||
|
except TypeError as e:
|
||
|
raise TypeError('precision must be an integer') from e
|
||
|
|
||
|
return options
|
||
|
|
||
|
|
||
|
@set_module('numpy')
|
||
|
def set_printoptions(precision=None, threshold=None, edgeitems=None,
|
||
|
linewidth=None, suppress=None, nanstr=None, infstr=None,
|
||
|
formatter=None, sign=None, floatmode=None, *, legacy=None):
|
||
|
"""
|
||
|
Set printing options.
|
||
|
|
||
|
These options determine the way floating point numbers, arrays and
|
||
|
other NumPy objects are displayed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
precision : int or None, optional
|
||
|
Number of digits of precision for floating point output (default 8).
|
||
|
May be None if `floatmode` is not `fixed`, to print as many digits as
|
||
|
necessary to uniquely specify the value.
|
||
|
threshold : int, optional
|
||
|
Total number of array elements which trigger summarization
|
||
|
rather than full repr (default 1000).
|
||
|
To always use the full repr without summarization, pass `sys.maxsize`.
|
||
|
edgeitems : int, optional
|
||
|
Number of array items in summary at beginning and end of
|
||
|
each dimension (default 3).
|
||
|
linewidth : int, optional
|
||
|
The number of characters per line for the purpose of inserting
|
||
|
line breaks (default 75).
|
||
|
suppress : bool, optional
|
||
|
If True, always print floating point numbers using fixed point
|
||
|
notation, in which case numbers equal to zero in the current precision
|
||
|
will print as zero. If False, then scientific notation is used when
|
||
|
absolute value of the smallest number is < 1e-4 or the ratio of the
|
||
|
maximum absolute value to the minimum is > 1e3. The default is False.
|
||
|
nanstr : str, optional
|
||
|
String representation of floating point not-a-number (default nan).
|
||
|
infstr : str, optional
|
||
|
String representation of floating point infinity (default inf).
|
||
|
sign : string, either '-', '+', or ' ', optional
|
||
|
Controls printing of the sign of floating-point types. If '+', always
|
||
|
print the sign of positive values. If ' ', always prints a space
|
||
|
(whitespace character) in the sign position of positive values. If
|
||
|
'-', omit the sign character of positive values. (default '-')
|
||
|
formatter : dict of callables, optional
|
||
|
If not None, the keys should indicate the type(s) that the respective
|
||
|
formatting function applies to. Callables should return a string.
|
||
|
Types that are not specified (by their corresponding keys) are handled
|
||
|
by the default formatters. Individual types for which a formatter
|
||
|
can be set are:
|
||
|
|
||
|
- 'bool'
|
||
|
- 'int'
|
||
|
- 'timedelta' : a `numpy.timedelta64`
|
||
|
- 'datetime' : a `numpy.datetime64`
|
||
|
- 'float'
|
||
|
- 'longfloat' : 128-bit floats
|
||
|
- 'complexfloat'
|
||
|
- 'longcomplexfloat' : composed of two 128-bit floats
|
||
|
- 'numpystr' : types `numpy.string_` and `numpy.unicode_`
|
||
|
- 'object' : `np.object_` arrays
|
||
|
|
||
|
Other keys that can be used to set a group of types at once are:
|
||
|
|
||
|
- 'all' : sets all types
|
||
|
- 'int_kind' : sets 'int'
|
||
|
- 'float_kind' : sets 'float' and 'longfloat'
|
||
|
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
|
||
|
- 'str_kind' : sets 'numpystr'
|
||
|
floatmode : str, optional
|
||
|
Controls the interpretation of the `precision` option for
|
||
|
floating-point types. Can take the following values
|
||
|
(default maxprec_equal):
|
||
|
|
||
|
* 'fixed': Always print exactly `precision` fractional digits,
|
||
|
even if this would print more or fewer digits than
|
||
|
necessary to specify the value uniquely.
|
||
|
* 'unique': Print the minimum number of fractional digits necessary
|
||
|
to represent each value uniquely. Different elements may
|
||
|
have a different number of digits. The value of the
|
||
|
`precision` option is ignored.
|
||
|
* 'maxprec': Print at most `precision` fractional digits, but if
|
||
|
an element can be uniquely represented with fewer digits
|
||
|
only print it with that many.
|
||
|
* 'maxprec_equal': Print at most `precision` fractional digits,
|
||
|
but if every element in the array can be uniquely
|
||
|
represented with an equal number of fewer digits, use that
|
||
|
many digits for all elements.
|
||
|
legacy : string or `False`, optional
|
||
|
If set to the string `'1.13'` enables 1.13 legacy printing mode. This
|
||
|
approximates numpy 1.13 print output by including a space in the sign
|
||
|
position of floats and different behavior for 0d arrays. This also
|
||
|
enables 1.21 legacy printing mode (described below).
|
||
|
|
||
|
If set to the string `'1.21'` enables 1.21 legacy printing mode. This
|
||
|
approximates numpy 1.21 print output of complex structured dtypes
|
||
|
by not inserting spaces after commas that separate fields and after
|
||
|
colons.
|
||
|
|
||
|
If set to `False`, disables legacy mode.
|
||
|
|
||
|
Unrecognized strings will be ignored with a warning for forward
|
||
|
compatibility.
|
||
|
|
||
|
.. versionadded:: 1.14.0
|
||
|
.. versionchanged:: 1.22.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
get_printoptions, printoptions, set_string_function, array2string
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`formatter` is always reset with a call to `set_printoptions`.
|
||
|
|
||
|
Use `printoptions` as a context manager to set the values temporarily.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Floating point precision can be set:
|
||
|
|
||
|
>>> np.set_printoptions(precision=4)
|
||
|
>>> np.array([1.123456789])
|
||
|
[1.1235]
|
||
|
|
||
|
Long arrays can be summarised:
|
||
|
|
||
|
>>> np.set_printoptions(threshold=5)
|
||
|
>>> np.arange(10)
|
||
|
array([0, 1, 2, ..., 7, 8, 9])
|
||
|
|
||
|
Small results can be suppressed:
|
||
|
|
||
|
>>> eps = np.finfo(float).eps
|
||
|
>>> x = np.arange(4.)
|
||
|
>>> x**2 - (x + eps)**2
|
||
|
array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
|
||
|
>>> np.set_printoptions(suppress=True)
|
||
|
>>> x**2 - (x + eps)**2
|
||
|
array([-0., -0., 0., 0.])
|
||
|
|
||
|
A custom formatter can be used to display array elements as desired:
|
||
|
|
||
|
>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
|
||
|
>>> x = np.arange(3)
|
||
|
>>> x
|
||
|
array([int: 0, int: -1, int: -2])
|
||
|
>>> np.set_printoptions() # formatter gets reset
|
||
|
>>> x
|
||
|
array([0, 1, 2])
|
||
|
|
||
|
To put back the default options, you can use:
|
||
|
|
||
|
>>> np.set_printoptions(edgeitems=3, infstr='inf',
|
||
|
... linewidth=75, nanstr='nan', precision=8,
|
||
|
... suppress=False, threshold=1000, formatter=None)
|
||
|
|
||
|
Also to temporarily override options, use `printoptions` as a context manager:
|
||
|
|
||
|
>>> with np.printoptions(precision=2, suppress=True, threshold=5):
|
||
|
... np.linspace(0, 10, 10)
|
||
|
array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ])
|
||
|
|
||
|
"""
|
||
|
opt = _make_options_dict(precision, threshold, edgeitems, linewidth,
|
||
|
suppress, nanstr, infstr, sign, formatter,
|
||
|
floatmode, legacy)
|
||
|
# formatter is always reset
|
||
|
opt['formatter'] = formatter
|
||
|
_format_options.update(opt)
|
||
|
|
||
|
# set the C variable for legacy mode
|
||
|
if _format_options['legacy'] == 113:
|
||
|
set_legacy_print_mode(113)
|
||
|
# reset the sign option in legacy mode to avoid confusion
|
||
|
_format_options['sign'] = '-'
|
||
|
elif _format_options['legacy'] == 121:
|
||
|
set_legacy_print_mode(121)
|
||
|
elif _format_options['legacy'] == sys.maxsize:
|
||
|
set_legacy_print_mode(0)
|
||
|
|
||
|
|
||
|
@set_module('numpy')
|
||
|
def get_printoptions():
|
||
|
"""
|
||
|
Return the current print options.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
print_opts : dict
|
||
|
Dictionary of current print options with keys
|
||
|
|
||
|
- precision : int
|
||
|
- threshold : int
|
||
|
- edgeitems : int
|
||
|
- linewidth : int
|
||
|
- suppress : bool
|
||
|
- nanstr : str
|
||
|
- infstr : str
|
||
|
- formatter : dict of callables
|
||
|
- sign : str
|
||
|
|
||
|
For a full description of these options, see `set_printoptions`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
set_printoptions, printoptions, set_string_function
|
||
|
|
||
|
"""
|
||
|
opts = _format_options.copy()
|
||
|
opts['legacy'] = {
|
||
|
113: '1.13', 121: '1.21', sys.maxsize: False,
|
||
|
}[opts['legacy']]
|
||
|
return opts
|
||
|
|
||
|
|
||
|
def _get_legacy_print_mode():
|
||
|
"""Return the legacy print mode as an int."""
|
||
|
return _format_options['legacy']
|
||
|
|
||
|
|
||
|
@set_module('numpy')
|
||
|
@contextlib.contextmanager
|
||
|
def printoptions(*args, **kwargs):
|
||
|
"""Context manager for setting print options.
|
||
|
|
||
|
Set print options for the scope of the `with` block, and restore the old
|
||
|
options at the end. See `set_printoptions` for the full description of
|
||
|
available options.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> from numpy.testing import assert_equal
|
||
|
>>> with np.printoptions(precision=2):
|
||
|
... np.array([2.0]) / 3
|
||
|
array([0.67])
|
||
|
|
||
|
The `as`-clause of the `with`-statement gives the current print options:
|
||
|
|
||
|
>>> with np.printoptions(precision=2) as opts:
|
||
|
... assert_equal(opts, np.get_printoptions())
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
set_printoptions, get_printoptions
|
||
|
|
||
|
"""
|
||
|
opts = np.get_printoptions()
|
||
|
try:
|
||
|
np.set_printoptions(*args, **kwargs)
|
||
|
yield np.get_printoptions()
|
||
|
finally:
|
||
|
np.set_printoptions(**opts)
|
||
|
|
||
|
|
||
|
def _leading_trailing(a, edgeitems, index=()):
|
||
|
"""
|
||
|
Keep only the N-D corners (leading and trailing edges) of an array.
|
||
|
|
||
|
Should be passed a base-class ndarray, since it makes no guarantees about
|
||
|
preserving subclasses.
|
||
|
"""
|
||
|
axis = len(index)
|
||
|
if axis == a.ndim:
|
||
|
return a[index]
|
||
|
|
||
|
if a.shape[axis] > 2*edgeitems:
|
||
|
return concatenate((
|
||
|
_leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]),
|
||
|
_leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:])
|
||
|
), axis=axis)
|
||
|
else:
|
||
|
return _leading_trailing(a, edgeitems, index + np.index_exp[:])
|
||
|
|
||
|
|
||
|
def _object_format(o):
|
||
|
""" Object arrays containing lists should be printed unambiguously """
|
||
|
if type(o) is list:
|
||
|
fmt = 'list({!r})'
|
||
|
else:
|
||
|
fmt = '{!r}'
|
||
|
return fmt.format(o)
|
||
|
|
||
|
def repr_format(x):
|
||
|
return repr(x)
|
||
|
|
||
|
def str_format(x):
|
||
|
return str(x)
|
||
|
|
||
|
def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy,
|
||
|
formatter, **kwargs):
|
||
|
# note: extra arguments in kwargs are ignored
|
||
|
|
||
|
# wrapped in lambdas to avoid taking a code path with the wrong type of data
|
||
|
formatdict = {
|
||
|
'bool': lambda: BoolFormat(data),
|
||
|
'int': lambda: IntegerFormat(data),
|
||
|
'float': lambda: FloatingFormat(
|
||
|
data, precision, floatmode, suppress, sign, legacy=legacy),
|
||
|
'longfloat': lambda: FloatingFormat(
|
||
|
data, precision, floatmode, suppress, sign, legacy=legacy),
|
||
|
'complexfloat': lambda: ComplexFloatingFormat(
|
||
|
data, precision, floatmode, suppress, sign, legacy=legacy),
|
||
|
'longcomplexfloat': lambda: ComplexFloatingFormat(
|
||
|
data, precision, floatmode, suppress, sign, legacy=legacy),
|
||
|
'datetime': lambda: DatetimeFormat(data, legacy=legacy),
|
||
|
'timedelta': lambda: TimedeltaFormat(data),
|
||
|
'object': lambda: _object_format,
|
||
|
'void': lambda: str_format,
|
||
|
'numpystr': lambda: repr_format}
|
||
|
|
||
|
# we need to wrap values in `formatter` in a lambda, so that the interface
|
||
|
# is the same as the above values.
|
||
|
def indirect(x):
|
||
|
return lambda: x
|
||
|
|
||
|
if formatter is not None:
|
||
|
fkeys = [k for k in formatter.keys() if formatter[k] is not None]
|
||
|
if 'all' in fkeys:
|
||
|
for key in formatdict.keys():
|
||
|
formatdict[key] = indirect(formatter['all'])
|
||
|
if 'int_kind' in fkeys:
|
||
|
for key in ['int']:
|
||
|
formatdict[key] = indirect(formatter['int_kind'])
|
||
|
if 'float_kind' in fkeys:
|
||
|
for key in ['float', 'longfloat']:
|
||
|
formatdict[key] = indirect(formatter['float_kind'])
|
||
|
if 'complex_kind' in fkeys:
|
||
|
for key in ['complexfloat', 'longcomplexfloat']:
|
||
|
formatdict[key] = indirect(formatter['complex_kind'])
|
||
|
if 'str_kind' in fkeys:
|
||
|
formatdict['numpystr'] = indirect(formatter['str_kind'])
|
||
|
for key in formatdict.keys():
|
||
|
if key in fkeys:
|
||
|
formatdict[key] = indirect(formatter[key])
|
||
|
|
||
|
return formatdict
|
||
|
|
||
|
def _get_format_function(data, **options):
|
||
|
"""
|
||
|
find the right formatting function for the dtype_
|
||
|
"""
|
||
|
dtype_ = data.dtype
|
||
|
dtypeobj = dtype_.type
|
||
|
formatdict = _get_formatdict(data, **options)
|
||
|
if dtypeobj is None:
|
||
|
return formatdict["numpystr"]()
|
||
|
elif issubclass(dtypeobj, _nt.bool_):
|
||
|
return formatdict['bool']()
|
||
|
elif issubclass(dtypeobj, _nt.integer):
|
||
|
if issubclass(dtypeobj, _nt.timedelta64):
|
||
|
return formatdict['timedelta']()
|
||
|
else:
|
||
|
return formatdict['int']()
|
||
|
elif issubclass(dtypeobj, _nt.floating):
|
||
|
if issubclass(dtypeobj, _nt.longfloat):
|
||
|
return formatdict['longfloat']()
|
||
|
else:
|
||
|
return formatdict['float']()
|
||
|
elif issubclass(dtypeobj, _nt.complexfloating):
|
||
|
if issubclass(dtypeobj, _nt.clongfloat):
|
||
|
return formatdict['longcomplexfloat']()
|
||
|
else:
|
||
|
return formatdict['complexfloat']()
|
||
|
elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)):
|
||
|
return formatdict['numpystr']()
|
||
|
elif issubclass(dtypeobj, _nt.datetime64):
|
||
|
return formatdict['datetime']()
|
||
|
elif issubclass(dtypeobj, _nt.object_):
|
||
|
return formatdict['object']()
|
||
|
elif issubclass(dtypeobj, _nt.void):
|
||
|
if dtype_.names is not None:
|
||
|
return StructuredVoidFormat.from_data(data, **options)
|
||
|
else:
|
||
|
return formatdict['void']()
|
||
|
else:
|
||
|
return formatdict['numpystr']()
|
||
|
|
||
|
|
||
|
def _recursive_guard(fillvalue='...'):
|
||
|
"""
|
||
|
Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs
|
||
|
|
||
|
Decorates a function such that if it calls itself with the same first
|
||
|
argument, it returns `fillvalue` instead of recursing.
|
||
|
|
||
|
Largely copied from reprlib.recursive_repr
|
||
|
"""
|
||
|
|
||
|
def decorating_function(f):
|
||
|
repr_running = set()
|
||
|
|
||
|
@functools.wraps(f)
|
||
|
def wrapper(self, *args, **kwargs):
|
||
|
key = id(self), get_ident()
|
||
|
if key in repr_running:
|
||
|
return fillvalue
|
||
|
repr_running.add(key)
|
||
|
try:
|
||
|
return f(self, *args, **kwargs)
|
||
|
finally:
|
||
|
repr_running.discard(key)
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
return decorating_function
|
||
|
|
||
|
|
||
|
# gracefully handle recursive calls, when object arrays contain themselves
|
||
|
@_recursive_guard()
|
||
|
def _array2string(a, options, separator=' ', prefix=""):
|
||
|
# The formatter __init__s in _get_format_function cannot deal with
|
||
|
# subclasses yet, and we also need to avoid recursion issues in
|
||
|
# _formatArray with subclasses which return 0d arrays in place of scalars
|
||
|
data = asarray(a)
|
||
|
if a.shape == ():
|
||
|
a = data
|
||
|
|
||
|
if a.size > options['threshold']:
|
||
|
summary_insert = "..."
|
||
|
data = _leading_trailing(data, options['edgeitems'])
|
||
|
else:
|
||
|
summary_insert = ""
|
||
|
|
||
|
# find the right formatting function for the array
|
||
|
format_function = _get_format_function(data, **options)
|
||
|
|
||
|
# skip over "["
|
||
|
next_line_prefix = " "
|
||
|
# skip over array(
|
||
|
next_line_prefix += " "*len(prefix)
|
||
|
|
||
|
lst = _formatArray(a, format_function, options['linewidth'],
|
||
|
next_line_prefix, separator, options['edgeitems'],
|
||
|
summary_insert, options['legacy'])
|
||
|
return lst
|
||
|
|
||
|
|
||
|
def _array2string_dispatcher(
|
||
|
a, max_line_width=None, precision=None,
|
||
|
suppress_small=None, separator=None, prefix=None,
|
||
|
style=None, formatter=None, threshold=None,
|
||
|
edgeitems=None, sign=None, floatmode=None, suffix=None,
|
||
|
*, legacy=None):
|
||
|
return (a,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_array2string_dispatcher, module='numpy')
|
||
|
def array2string(a, max_line_width=None, precision=None,
|
||
|
suppress_small=None, separator=' ', prefix="",
|
||
|
style=np._NoValue, formatter=None, threshold=None,
|
||
|
edgeitems=None, sign=None, floatmode=None, suffix="",
|
||
|
*, legacy=None):
|
||
|
"""
|
||
|
Return a string representation of an array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : ndarray
|
||
|
Input array.
|
||
|
max_line_width : int, optional
|
||
|
Inserts newlines if text is longer than `max_line_width`.
|
||
|
Defaults to ``numpy.get_printoptions()['linewidth']``.
|
||
|
precision : int or None, optional
|
||
|
Floating point precision.
|
||
|
Defaults to ``numpy.get_printoptions()['precision']``.
|
||
|
suppress_small : bool, optional
|
||
|
Represent numbers "very close" to zero as zero; default is False.
|
||
|
Very close is defined by precision: if the precision is 8, e.g.,
|
||
|
numbers smaller (in absolute value) than 5e-9 are represented as
|
||
|
zero.
|
||
|
Defaults to ``numpy.get_printoptions()['suppress']``.
|
||
|
separator : str, optional
|
||
|
Inserted between elements.
|
||
|
prefix : str, optional
|
||
|
suffix : str, optional
|
||
|
The length of the prefix and suffix strings are used to respectively
|
||
|
align and wrap the output. An array is typically printed as::
|
||
|
|
||
|
prefix + array2string(a) + suffix
|
||
|
|
||
|
The output is left-padded by the length of the prefix string, and
|
||
|
wrapping is forced at the column ``max_line_width - len(suffix)``.
|
||
|
It should be noted that the content of prefix and suffix strings are
|
||
|
not included in the output.
|
||
|
style : _NoValue, optional
|
||
|
Has no effect, do not use.
|
||
|
|
||
|
.. deprecated:: 1.14.0
|
||
|
formatter : dict of callables, optional
|
||
|
If not None, the keys should indicate the type(s) that the respective
|
||
|
formatting function applies to. Callables should return a string.
|
||
|
Types that are not specified (by their corresponding keys) are handled
|
||
|
by the default formatters. Individual types for which a formatter
|
||
|
can be set are:
|
||
|
|
||
|
- 'bool'
|
||
|
- 'int'
|
||
|
- 'timedelta' : a `numpy.timedelta64`
|
||
|
- 'datetime' : a `numpy.datetime64`
|
||
|
- 'float'
|
||
|
- 'longfloat' : 128-bit floats
|
||
|
- 'complexfloat'
|
||
|
- 'longcomplexfloat' : composed of two 128-bit floats
|
||
|
- 'void' : type `numpy.void`
|
||
|
- 'numpystr' : types `numpy.string_` and `numpy.unicode_`
|
||
|
|
||
|
Other keys that can be used to set a group of types at once are:
|
||
|
|
||
|
- 'all' : sets all types
|
||
|
- 'int_kind' : sets 'int'
|
||
|
- 'float_kind' : sets 'float' and 'longfloat'
|
||
|
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
|
||
|
- 'str_kind' : sets 'numpystr'
|
||
|
threshold : int, optional
|
||
|
Total number of array elements which trigger summarization
|
||
|
rather than full repr.
|
||
|
Defaults to ``numpy.get_printoptions()['threshold']``.
|
||
|
edgeitems : int, optional
|
||
|
Number of array items in summary at beginning and end of
|
||
|
each dimension.
|
||
|
Defaults to ``numpy.get_printoptions()['edgeitems']``.
|
||
|
sign : string, either '-', '+', or ' ', optional
|
||
|
Controls printing of the sign of floating-point types. If '+', always
|
||
|
print the sign of positive values. If ' ', always prints a space
|
||
|
(whitespace character) in the sign position of positive values. If
|
||
|
'-', omit the sign character of positive values.
|
||
|
Defaults to ``numpy.get_printoptions()['sign']``.
|
||
|
floatmode : str, optional
|
||
|
Controls the interpretation of the `precision` option for
|
||
|
floating-point types.
|
||
|
Defaults to ``numpy.get_printoptions()['floatmode']``.
|
||
|
Can take the following values:
|
||
|
|
||
|
- 'fixed': Always print exactly `precision` fractional digits,
|
||
|
even if this would print more or fewer digits than
|
||
|
necessary to specify the value uniquely.
|
||
|
- 'unique': Print the minimum number of fractional digits necessary
|
||
|
to represent each value uniquely. Different elements may
|
||
|
have a different number of digits. The value of the
|
||
|
`precision` option is ignored.
|
||
|
- 'maxprec': Print at most `precision` fractional digits, but if
|
||
|
an element can be uniquely represented with fewer digits
|
||
|
only print it with that many.
|
||
|
- 'maxprec_equal': Print at most `precision` fractional digits,
|
||
|
but if every element in the array can be uniquely
|
||
|
represented with an equal number of fewer digits, use that
|
||
|
many digits for all elements.
|
||
|
legacy : string or `False`, optional
|
||
|
If set to the string `'1.13'` enables 1.13 legacy printing mode. This
|
||
|
approximates numpy 1.13 print output by including a space in the sign
|
||
|
position of floats and different behavior for 0d arrays. If set to
|
||
|
`False`, disables legacy mode. Unrecognized strings will be ignored
|
||
|
with a warning for forward compatibility.
|
||
|
|
||
|
.. versionadded:: 1.14.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array_str : str
|
||
|
String representation of the array.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError
|
||
|
if a callable in `formatter` does not return a string.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
array_str, array_repr, set_printoptions, get_printoptions
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If a formatter is specified for a certain type, the `precision` keyword is
|
||
|
ignored for that type.
|
||
|
|
||
|
This is a very flexible function; `array_repr` and `array_str` are using
|
||
|
`array2string` internally so keywords with the same name should work
|
||
|
identically in all three functions.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x = np.array([1e-16,1,2,3])
|
||
|
>>> np.array2string(x, precision=2, separator=',',
|
||
|
... suppress_small=True)
|
||
|
'[0.,1.,2.,3.]'
|
||
|
|
||
|
>>> x = np.arange(3.)
|
||
|
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
|
||
|
'[0.00 1.00 2.00]'
|
||
|
|
||
|
>>> x = np.arange(3)
|
||
|
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
|
||
|
'[0x0 0x1 0x2]'
|
||
|
|
||
|
"""
|
||
|
|
||
|
overrides = _make_options_dict(precision, threshold, edgeitems,
|
||
|
max_line_width, suppress_small, None, None,
|
||
|
sign, formatter, floatmode, legacy)
|
||
|
options = _format_options.copy()
|
||
|
options.update(overrides)
|
||
|
|
||
|
if options['legacy'] <= 113:
|
||
|
if style is np._NoValue:
|
||
|
style = repr
|
||
|
|
||
|
if a.shape == () and a.dtype.names is None:
|
||
|
return style(a.item())
|
||
|
elif style is not np._NoValue:
|
||
|
# Deprecation 11-9-2017 v1.14
|
||
|
warnings.warn("'style' argument is deprecated and no longer functional"
|
||
|
" except in 1.13 'legacy' mode",
|
||
|
DeprecationWarning, stacklevel=3)
|
||
|
|
||
|
if options['legacy'] > 113:
|
||
|
options['linewidth'] -= len(suffix)
|
||
|
|
||
|
# treat as a null array if any of shape elements == 0
|
||
|
if a.size == 0:
|
||
|
return "[]"
|
||
|
|
||
|
return _array2string(a, options, separator, prefix)
|
||
|
|
||
|
|
||
|
def _extendLine(s, line, word, line_width, next_line_prefix, legacy):
|
||
|
needs_wrap = len(line) + len(word) > line_width
|
||
|
if legacy > 113:
|
||
|
# don't wrap lines if it won't help
|
||
|
if len(line) <= len(next_line_prefix):
|
||
|
needs_wrap = False
|
||
|
|
||
|
if needs_wrap:
|
||
|
s += line.rstrip() + "\n"
|
||
|
line = next_line_prefix
|
||
|
line += word
|
||
|
return s, line
|
||
|
|
||
|
|
||
|
def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy):
|
||
|
"""
|
||
|
Extends line with nicely formatted (possibly multi-line) string ``word``.
|
||
|
"""
|
||
|
words = word.splitlines()
|
||
|
if len(words) == 1 or legacy <= 113:
|
||
|
return _extendLine(s, line, word, line_width, next_line_prefix, legacy)
|
||
|
|
||
|
max_word_length = max(len(word) for word in words)
|
||
|
if (len(line) + max_word_length > line_width and
|
||
|
len(line) > len(next_line_prefix)):
|
||
|
s += line.rstrip() + '\n'
|
||
|
line = next_line_prefix + words[0]
|
||
|
indent = next_line_prefix
|
||
|
else:
|
||
|
indent = len(line)*' '
|
||
|
line += words[0]
|
||
|
|
||
|
for word in words[1::]:
|
||
|
s += line.rstrip() + '\n'
|
||
|
line = indent + word
|
||
|
|
||
|
suffix_length = max_word_length - len(words[-1])
|
||
|
line += suffix_length*' '
|
||
|
|
||
|
return s, line
|
||
|
|
||
|
def _formatArray(a, format_function, line_width, next_line_prefix,
|
||
|
separator, edge_items, summary_insert, legacy):
|
||
|
"""formatArray is designed for two modes of operation:
|
||
|
|
||
|
1. Full output
|
||
|
|
||
|
2. Summarized output
|
||
|
|
||
|
"""
|
||
|
def recurser(index, hanging_indent, curr_width):
|
||
|
"""
|
||
|
By using this local function, we don't need to recurse with all the
|
||
|
arguments. Since this function is not created recursively, the cost is
|
||
|
not significant
|
||
|
"""
|
||
|
axis = len(index)
|
||
|
axes_left = a.ndim - axis
|
||
|
|
||
|
if axes_left == 0:
|
||
|
return format_function(a[index])
|
||
|
|
||
|
# when recursing, add a space to align with the [ added, and reduce the
|
||
|
# length of the line by 1
|
||
|
next_hanging_indent = hanging_indent + ' '
|
||
|
if legacy <= 113:
|
||
|
next_width = curr_width
|
||
|
else:
|
||
|
next_width = curr_width - len(']')
|
||
|
|
||
|
a_len = a.shape[axis]
|
||
|
show_summary = summary_insert and 2*edge_items < a_len
|
||
|
if show_summary:
|
||
|
leading_items = edge_items
|
||
|
trailing_items = edge_items
|
||
|
else:
|
||
|
leading_items = 0
|
||
|
trailing_items = a_len
|
||
|
|
||
|
# stringify the array with the hanging indent on the first line too
|
||
|
s = ''
|
||
|
|
||
|
# last axis (rows) - wrap elements if they would not fit on one line
|
||
|
if axes_left == 1:
|
||
|
# the length up until the beginning of the separator / bracket
|
||
|
if legacy <= 113:
|
||
|
elem_width = curr_width - len(separator.rstrip())
|
||
|
else:
|
||
|
elem_width = curr_width - max(len(separator.rstrip()), len(']'))
|
||
|
|
||
|
line = hanging_indent
|
||
|
for i in range(leading_items):
|
||
|
word = recurser(index + (i,), next_hanging_indent, next_width)
|
||
|
s, line = _extendLine_pretty(
|
||
|
s, line, word, elem_width, hanging_indent, legacy)
|
||
|
line += separator
|
||
|
|
||
|
if show_summary:
|
||
|
s, line = _extendLine(
|
||
|
s, line, summary_insert, elem_width, hanging_indent, legacy)
|
||
|
if legacy <= 113:
|
||
|
line += ", "
|
||
|
else:
|
||
|
line += separator
|
||
|
|
||
|
for i in range(trailing_items, 1, -1):
|
||
|
word = recurser(index + (-i,), next_hanging_indent, next_width)
|
||
|
s, line = _extendLine_pretty(
|
||
|
s, line, word, elem_width, hanging_indent, legacy)
|
||
|
line += separator
|
||
|
|
||
|
if legacy <= 113:
|
||
|
# width of the separator is not considered on 1.13
|
||
|
elem_width = curr_width
|
||
|
word = recurser(index + (-1,), next_hanging_indent, next_width)
|
||
|
s, line = _extendLine_pretty(
|
||
|
s, line, word, elem_width, hanging_indent, legacy)
|
||
|
|
||
|
s += line
|
||
|
|
||
|
# other axes - insert newlines between rows
|
||
|
else:
|
||
|
s = ''
|
||
|
line_sep = separator.rstrip() + '\n'*(axes_left - 1)
|
||
|
|
||
|
for i in range(leading_items):
|
||
|
nested = recurser(index + (i,), next_hanging_indent, next_width)
|
||
|
s += hanging_indent + nested + line_sep
|
||
|
|
||
|
if show_summary:
|
||
|
if legacy <= 113:
|
||
|
# trailing space, fixed nbr of newlines, and fixed separator
|
||
|
s += hanging_indent + summary_insert + ", \n"
|
||
|
else:
|
||
|
s += hanging_indent + summary_insert + line_sep
|
||
|
|
||
|
for i in range(trailing_items, 1, -1):
|
||
|
nested = recurser(index + (-i,), next_hanging_indent,
|
||
|
next_width)
|
||
|
s += hanging_indent + nested + line_sep
|
||
|
|
||
|
nested = recurser(index + (-1,), next_hanging_indent, next_width)
|
||
|
s += hanging_indent + nested
|
||
|
|
||
|
# remove the hanging indent, and wrap in []
|
||
|
s = '[' + s[len(hanging_indent):] + ']'
|
||
|
return s
|
||
|
|
||
|
try:
|
||
|
# invoke the recursive part with an initial index and prefix
|
||
|
return recurser(index=(),
|
||
|
hanging_indent=next_line_prefix,
|
||
|
curr_width=line_width)
|
||
|
finally:
|
||
|
# recursive closures have a cyclic reference to themselves, which
|
||
|
# requires gc to collect (gh-10620). To avoid this problem, for
|
||
|
# performance and PyPy friendliness, we break the cycle:
|
||
|
recurser = None
|
||
|
|
||
|
def _none_or_positive_arg(x, name):
|
||
|
if x is None:
|
||
|
return -1
|
||
|
if x < 0:
|
||
|
raise ValueError("{} must be >= 0".format(name))
|
||
|
return x
|
||
|
|
||
|
class FloatingFormat:
|
||
|
""" Formatter for subtypes of np.floating """
|
||
|
def __init__(self, data, precision, floatmode, suppress_small, sign=False,
|
||
|
*, legacy=None):
|
||
|
# for backcompatibility, accept bools
|
||
|
if isinstance(sign, bool):
|
||
|
sign = '+' if sign else '-'
|
||
|
|
||
|
self._legacy = legacy
|
||
|
if self._legacy <= 113:
|
||
|
# when not 0d, legacy does not support '-'
|
||
|
if data.shape != () and sign == '-':
|
||
|
sign = ' '
|
||
|
|
||
|
self.floatmode = floatmode
|
||
|
if floatmode == 'unique':
|
||
|
self.precision = None
|
||
|
else:
|
||
|
self.precision = precision
|
||
|
|
||
|
self.precision = _none_or_positive_arg(self.precision, 'precision')
|
||
|
|
||
|
self.suppress_small = suppress_small
|
||
|
self.sign = sign
|
||
|
self.exp_format = False
|
||
|
self.large_exponent = False
|
||
|
|
||
|
self.fillFormat(data)
|
||
|
|
||
|
def fillFormat(self, data):
|
||
|
# only the finite values are used to compute the number of digits
|
||
|
finite_vals = data[isfinite(data)]
|
||
|
|
||
|
# choose exponential mode based on the non-zero finite values:
|
||
|
abs_non_zero = absolute(finite_vals[finite_vals != 0])
|
||
|
if len(abs_non_zero) != 0:
|
||
|
max_val = np.max(abs_non_zero)
|
||
|
min_val = np.min(abs_non_zero)
|
||
|
with errstate(over='ignore'): # division can overflow
|
||
|
if max_val >= 1.e8 or (not self.suppress_small and
|
||
|
(min_val < 0.0001 or max_val/min_val > 1000.)):
|
||
|
self.exp_format = True
|
||
|
|
||
|
# do a first pass of printing all the numbers, to determine sizes
|
||
|
if len(finite_vals) == 0:
|
||
|
self.pad_left = 0
|
||
|
self.pad_right = 0
|
||
|
self.trim = '.'
|
||
|
self.exp_size = -1
|
||
|
self.unique = True
|
||
|
self.min_digits = None
|
||
|
elif self.exp_format:
|
||
|
trim, unique = '.', True
|
||
|
if self.floatmode == 'fixed' or self._legacy <= 113:
|
||
|
trim, unique = 'k', False
|
||
|
strs = (dragon4_scientific(x, precision=self.precision,
|
||
|
unique=unique, trim=trim, sign=self.sign == '+')
|
||
|
for x in finite_vals)
|
||
|
frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs))
|
||
|
int_part, frac_part = zip(*(s.split('.') for s in frac_strs))
|
||
|
self.exp_size = max(len(s) for s in exp_strs) - 1
|
||
|
|
||
|
self.trim = 'k'
|
||
|
self.precision = max(len(s) for s in frac_part)
|
||
|
self.min_digits = self.precision
|
||
|
self.unique = unique
|
||
|
|
||
|
# for back-compat with np 1.13, use 2 spaces & sign and full prec
|
||
|
if self._legacy <= 113:
|
||
|
self.pad_left = 3
|
||
|
else:
|
||
|
# this should be only 1 or 2. Can be calculated from sign.
|
||
|
self.pad_left = max(len(s) for s in int_part)
|
||
|
# pad_right is only needed for nan length calculation
|
||
|
self.pad_right = self.exp_size + 2 + self.precision
|
||
|
else:
|
||
|
trim, unique = '.', True
|
||
|
if self.floatmode == 'fixed':
|
||
|
trim, unique = 'k', False
|
||
|
strs = (dragon4_positional(x, precision=self.precision,
|
||
|
fractional=True,
|
||
|
unique=unique, trim=trim,
|
||
|
sign=self.sign == '+')
|
||
|
for x in finite_vals)
|
||
|
int_part, frac_part = zip(*(s.split('.') for s in strs))
|
||
|
if self._legacy <= 113:
|
||
|
self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part)
|
||
|
else:
|
||
|
self.pad_left = max(len(s) for s in int_part)
|
||
|
self.pad_right = max(len(s) for s in frac_part)
|
||
|
self.exp_size = -1
|
||
|
self.unique = unique
|
||
|
|
||
|
if self.floatmode in ['fixed', 'maxprec_equal']:
|
||
|
self.precision = self.min_digits = self.pad_right
|
||
|
self.trim = 'k'
|
||
|
else:
|
||
|
self.trim = '.'
|
||
|
self.min_digits = 0
|
||
|
|
||
|
if self._legacy > 113:
|
||
|
# account for sign = ' ' by adding one to pad_left
|
||
|
if self.sign == ' ' and not any(np.signbit(finite_vals)):
|
||
|
self.pad_left += 1
|
||
|
|
||
|
# if there are non-finite values, may need to increase pad_left
|
||
|
if data.size != finite_vals.size:
|
||
|
neginf = self.sign != '-' or any(data[isinf(data)] < 0)
|
||
|
nanlen = len(_format_options['nanstr'])
|
||
|
inflen = len(_format_options['infstr']) + neginf
|
||
|
offset = self.pad_right + 1 # +1 for decimal pt
|
||
|
self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
if not np.isfinite(x):
|
||
|
with errstate(invalid='ignore'):
|
||
|
if np.isnan(x):
|
||
|
sign = '+' if self.sign == '+' else ''
|
||
|
ret = sign + _format_options['nanstr']
|
||
|
else: # isinf
|
||
|
sign = '-' if x < 0 else '+' if self.sign == '+' else ''
|
||
|
ret = sign + _format_options['infstr']
|
||
|
return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret
|
||
|
|
||
|
if self.exp_format:
|
||
|
return dragon4_scientific(x,
|
||
|
precision=self.precision,
|
||
|
min_digits=self.min_digits,
|
||
|
unique=self.unique,
|
||
|
trim=self.trim,
|
||
|
sign=self.sign == '+',
|
||
|
pad_left=self.pad_left,
|
||
|
exp_digits=self.exp_size)
|
||
|
else:
|
||
|
return dragon4_positional(x,
|
||
|
precision=self.precision,
|
||
|
min_digits=self.min_digits,
|
||
|
unique=self.unique,
|
||
|
fractional=True,
|
||
|
trim=self.trim,
|
||
|
sign=self.sign == '+',
|
||
|
pad_left=self.pad_left,
|
||
|
pad_right=self.pad_right)
|
||
|
|
||
|
|
||
|
@set_module('numpy')
|
||
|
def format_float_scientific(x, precision=None, unique=True, trim='k',
|
||
|
sign=False, pad_left=None, exp_digits=None,
|
||
|
min_digits=None):
|
||
|
"""
|
||
|
Format a floating-point scalar as a decimal string in scientific notation.
|
||
|
|
||
|
Provides control over rounding, trimming and padding. Uses and assumes
|
||
|
IEEE unbiased rounding. Uses the "Dragon4" algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : python float or numpy floating scalar
|
||
|
Value to format.
|
||
|
precision : non-negative integer or None, optional
|
||
|
Maximum number of digits to print. May be None if `unique` is
|
||
|
`True`, but must be an integer if unique is `False`.
|
||
|
unique : boolean, optional
|
||
|
If `True`, use a digit-generation strategy which gives the shortest
|
||
|
representation which uniquely identifies the floating-point number from
|
||
|
other values of the same type, by judicious rounding. If `precision`
|
||
|
is given fewer digits than necessary can be printed. If `min_digits`
|
||
|
is given more can be printed, in which cases the last digit is rounded
|
||
|
with unbiased rounding.
|
||
|
If `False`, digits are generated as if printing an infinite-precision
|
||
|
value and stopping after `precision` digits, rounding the remaining
|
||
|
value with unbiased rounding
|
||
|
trim : one of 'k', '.', '0', '-', optional
|
||
|
Controls post-processing trimming of trailing digits, as follows:
|
||
|
|
||
|
* 'k' : keep trailing zeros, keep decimal point (no trimming)
|
||
|
* '.' : trim all trailing zeros, leave decimal point
|
||
|
* '0' : trim all but the zero before the decimal point. Insert the
|
||
|
zero if it is missing.
|
||
|
* '-' : trim trailing zeros and any trailing decimal point
|
||
|
sign : boolean, optional
|
||
|
Whether to show the sign for positive values.
|
||
|
pad_left : non-negative integer, optional
|
||
|
Pad the left side of the string with whitespace until at least that
|
||
|
many characters are to the left of the decimal point.
|
||
|
exp_digits : non-negative integer, optional
|
||
|
Pad the exponent with zeros until it contains at least this many digits.
|
||
|
If omitted, the exponent will be at least 2 digits.
|
||
|
min_digits : non-negative integer or None, optional
|
||
|
Minimum number of digits to print. This only has an effect for
|
||
|
`unique=True`. In that case more digits than necessary to uniquely
|
||
|
identify the value may be printed and rounded unbiased.
|
||
|
|
||
|
-- versionadded:: 1.21.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rep : string
|
||
|
The string representation of the floating point value
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
format_float_positional
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> np.format_float_scientific(np.float32(np.pi))
|
||
|
'3.1415927e+00'
|
||
|
>>> s = np.float32(1.23e24)
|
||
|
>>> np.format_float_scientific(s, unique=False, precision=15)
|
||
|
'1.230000071797338e+24'
|
||
|
>>> np.format_float_scientific(s, exp_digits=4)
|
||
|
'1.23e+0024'
|
||
|
"""
|
||
|
precision = _none_or_positive_arg(precision, 'precision')
|
||
|
pad_left = _none_or_positive_arg(pad_left, 'pad_left')
|
||
|
exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits')
|
||
|
min_digits = _none_or_positive_arg(min_digits, 'min_digits')
|
||
|
if min_digits > 0 and precision > 0 and min_digits > precision:
|
||
|
raise ValueError("min_digits must be less than or equal to precision")
|
||
|
return dragon4_scientific(x, precision=precision, unique=unique,
|
||
|
trim=trim, sign=sign, pad_left=pad_left,
|
||
|
exp_digits=exp_digits, min_digits=min_digits)
|
||
|
|
||
|
|
||
|
@set_module('numpy')
|
||
|
def format_float_positional(x, precision=None, unique=True,
|
||
|
fractional=True, trim='k', sign=False,
|
||
|
pad_left=None, pad_right=None, min_digits=None):
|
||
|
"""
|
||
|
Format a floating-point scalar as a decimal string in positional notation.
|
||
|
|
||
|
Provides control over rounding, trimming and padding. Uses and assumes
|
||
|
IEEE unbiased rounding. Uses the "Dragon4" algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : python float or numpy floating scalar
|
||
|
Value to format.
|
||
|
precision : non-negative integer or None, optional
|
||
|
Maximum number of digits to print. May be None if `unique` is
|
||
|
`True`, but must be an integer if unique is `False`.
|
||
|
unique : boolean, optional
|
||
|
If `True`, use a digit-generation strategy which gives the shortest
|
||
|
representation which uniquely identifies the floating-point number from
|
||
|
other values of the same type, by judicious rounding. If `precision`
|
||
|
is given fewer digits than necessary can be printed, or if `min_digits`
|
||
|
is given more can be printed, in which cases the last digit is rounded
|
||
|
with unbiased rounding.
|
||
|
If `False`, digits are generated as if printing an infinite-precision
|
||
|
value and stopping after `precision` digits, rounding the remaining
|
||
|
value with unbiased rounding
|
||
|
fractional : boolean, optional
|
||
|
If `True`, the cutoffs of `precision` and `min_digits` refer to the
|
||
|
total number of digits after the decimal point, including leading
|
||
|
zeros.
|
||
|
If `False`, `precision` and `min_digits` refer to the total number of
|
||
|
significant digits, before or after the decimal point, ignoring leading
|
||
|
zeros.
|
||
|
trim : one of 'k', '.', '0', '-', optional
|
||
|
Controls post-processing trimming of trailing digits, as follows:
|
||
|
|
||
|
* 'k' : keep trailing zeros, keep decimal point (no trimming)
|
||
|
* '.' : trim all trailing zeros, leave decimal point
|
||
|
* '0' : trim all but the zero before the decimal point. Insert the
|
||
|
zero if it is missing.
|
||
|
* '-' : trim trailing zeros and any trailing decimal point
|
||
|
sign : boolean, optional
|
||
|
Whether to show the sign for positive values.
|
||
|
pad_left : non-negative integer, optional
|
||
|
Pad the left side of the string with whitespace until at least that
|
||
|
many characters are to the left of the decimal point.
|
||
|
pad_right : non-negative integer, optional
|
||
|
Pad the right side of the string with whitespace until at least that
|
||
|
many characters are to the right of the decimal point.
|
||
|
min_digits : non-negative integer or None, optional
|
||
|
Minimum number of digits to print. Only has an effect if `unique=True`
|
||
|
in which case additional digits past those necessary to uniquely
|
||
|
identify the value may be printed, rounding the last additional digit.
|
||
|
|
||
|
-- versionadded:: 1.21.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rep : string
|
||
|
The string representation of the floating point value
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
format_float_scientific
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> np.format_float_positional(np.float32(np.pi))
|
||
|
'3.1415927'
|
||
|
>>> np.format_float_positional(np.float16(np.pi))
|
||
|
'3.14'
|
||
|
>>> np.format_float_positional(np.float16(0.3))
|
||
|
'0.3'
|
||
|
>>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
|
||
|
'0.3000488281'
|
||
|
"""
|
||
|
precision = _none_or_positive_arg(precision, 'precision')
|
||
|
pad_left = _none_or_positive_arg(pad_left, 'pad_left')
|
||
|
pad_right = _none_or_positive_arg(pad_right, 'pad_right')
|
||
|
min_digits = _none_or_positive_arg(min_digits, 'min_digits')
|
||
|
if not fractional and precision == 0:
|
||
|
raise ValueError("precision must be greater than 0 if "
|
||
|
"fractional=False")
|
||
|
if min_digits > 0 and precision > 0 and min_digits > precision:
|
||
|
raise ValueError("min_digits must be less than or equal to precision")
|
||
|
return dragon4_positional(x, precision=precision, unique=unique,
|
||
|
fractional=fractional, trim=trim,
|
||
|
sign=sign, pad_left=pad_left,
|
||
|
pad_right=pad_right, min_digits=min_digits)
|
||
|
|
||
|
|
||
|
class IntegerFormat:
|
||
|
def __init__(self, data):
|
||
|
if data.size > 0:
|
||
|
max_str_len = max(len(str(np.max(data))),
|
||
|
len(str(np.min(data))))
|
||
|
else:
|
||
|
max_str_len = 0
|
||
|
self.format = '%{}d'.format(max_str_len)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
return self.format % x
|
||
|
|
||
|
|
||
|
class BoolFormat:
|
||
|
def __init__(self, data, **kwargs):
|
||
|
# add an extra space so " True" and "False" have the same length and
|
||
|
# array elements align nicely when printed, except in 0d arrays
|
||
|
self.truestr = ' True' if data.shape != () else 'True'
|
||
|
|
||
|
def __call__(self, x):
|
||
|
return self.truestr if x else "False"
|
||
|
|
||
|
|
||
|
class ComplexFloatingFormat:
|
||
|
""" Formatter for subtypes of np.complexfloating """
|
||
|
def __init__(self, x, precision, floatmode, suppress_small,
|
||
|
sign=False, *, legacy=None):
|
||
|
# for backcompatibility, accept bools
|
||
|
if isinstance(sign, bool):
|
||
|
sign = '+' if sign else '-'
|
||
|
|
||
|
floatmode_real = floatmode_imag = floatmode
|
||
|
if legacy <= 113:
|
||
|
floatmode_real = 'maxprec_equal'
|
||
|
floatmode_imag = 'maxprec'
|
||
|
|
||
|
self.real_format = FloatingFormat(
|
||
|
x.real, precision, floatmode_real, suppress_small,
|
||
|
sign=sign, legacy=legacy
|
||
|
)
|
||
|
self.imag_format = FloatingFormat(
|
||
|
x.imag, precision, floatmode_imag, suppress_small,
|
||
|
sign='+', legacy=legacy
|
||
|
)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
r = self.real_format(x.real)
|
||
|
i = self.imag_format(x.imag)
|
||
|
|
||
|
# add the 'j' before the terminal whitespace in i
|
||
|
sp = len(i.rstrip())
|
||
|
i = i[:sp] + 'j' + i[sp:]
|
||
|
|
||
|
return r + i
|
||
|
|
||
|
|
||
|
class _TimelikeFormat:
|
||
|
def __init__(self, data):
|
||
|
non_nat = data[~isnat(data)]
|
||
|
if len(non_nat) > 0:
|
||
|
# Max str length of non-NaT elements
|
||
|
max_str_len = max(len(self._format_non_nat(np.max(non_nat))),
|
||
|
len(self._format_non_nat(np.min(non_nat))))
|
||
|
else:
|
||
|
max_str_len = 0
|
||
|
if len(non_nat) < data.size:
|
||
|
# data contains a NaT
|
||
|
max_str_len = max(max_str_len, 5)
|
||
|
self._format = '%{}s'.format(max_str_len)
|
||
|
self._nat = "'NaT'".rjust(max_str_len)
|
||
|
|
||
|
def _format_non_nat(self, x):
|
||
|
# override in subclass
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __call__(self, x):
|
||
|
if isnat(x):
|
||
|
return self._nat
|
||
|
else:
|
||
|
return self._format % self._format_non_nat(x)
|
||
|
|
||
|
|
||
|
class DatetimeFormat(_TimelikeFormat):
|
||
|
def __init__(self, x, unit=None, timezone=None, casting='same_kind',
|
||
|
legacy=False):
|
||
|
# Get the unit from the dtype
|
||
|
if unit is None:
|
||
|
if x.dtype.kind == 'M':
|
||
|
unit = datetime_data(x.dtype)[0]
|
||
|
else:
|
||
|
unit = 's'
|
||
|
|
||
|
if timezone is None:
|
||
|
timezone = 'naive'
|
||
|
self.timezone = timezone
|
||
|
self.unit = unit
|
||
|
self.casting = casting
|
||
|
self.legacy = legacy
|
||
|
|
||
|
# must be called after the above are configured
|
||
|
super().__init__(x)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
if self.legacy <= 113:
|
||
|
return self._format_non_nat(x)
|
||
|
return super().__call__(x)
|
||
|
|
||
|
def _format_non_nat(self, x):
|
||
|
return "'%s'" % datetime_as_string(x,
|
||
|
unit=self.unit,
|
||
|
timezone=self.timezone,
|
||
|
casting=self.casting)
|
||
|
|
||
|
|
||
|
class TimedeltaFormat(_TimelikeFormat):
|
||
|
def _format_non_nat(self, x):
|
||
|
return str(x.astype('i8'))
|
||
|
|
||
|
|
||
|
class SubArrayFormat:
|
||
|
def __init__(self, format_function):
|
||
|
self.format_function = format_function
|
||
|
|
||
|
def __call__(self, arr):
|
||
|
if arr.ndim <= 1:
|
||
|
return "[" + ", ".join(self.format_function(a) for a in arr) + "]"
|
||
|
return "[" + ", ".join(self.__call__(a) for a in arr) + "]"
|
||
|
|
||
|
|
||
|
class StructuredVoidFormat:
|
||
|
"""
|
||
|
Formatter for structured np.void objects.
|
||
|
|
||
|
This does not work on structured alias types like np.dtype(('i4', 'i2,i2')),
|
||
|
as alias scalars lose their field information, and the implementation
|
||
|
relies upon np.void.__getitem__.
|
||
|
"""
|
||
|
def __init__(self, format_functions):
|
||
|
self.format_functions = format_functions
|
||
|
|
||
|
@classmethod
|
||
|
def from_data(cls, data, **options):
|
||
|
"""
|
||
|
This is a second way to initialize StructuredVoidFormat, using the raw data
|
||
|
as input. Added to avoid changing the signature of __init__.
|
||
|
"""
|
||
|
format_functions = []
|
||
|
for field_name in data.dtype.names:
|
||
|
format_function = _get_format_function(data[field_name], **options)
|
||
|
if data.dtype[field_name].shape != ():
|
||
|
format_function = SubArrayFormat(format_function)
|
||
|
format_functions.append(format_function)
|
||
|
return cls(format_functions)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
str_fields = [
|
||
|
format_function(field)
|
||
|
for field, format_function in zip(x, self.format_functions)
|
||
|
]
|
||
|
if len(str_fields) == 1:
|
||
|
return "({},)".format(str_fields[0])
|
||
|
else:
|
||
|
return "({})".format(", ".join(str_fields))
|
||
|
|
||
|
|
||
|
def _void_scalar_repr(x):
|
||
|
"""
|
||
|
Implements the repr for structured-void scalars. It is called from the
|
||
|
scalartypes.c.src code, and is placed here because it uses the elementwise
|
||
|
formatters defined above.
|
||
|
"""
|
||
|
return StructuredVoidFormat.from_data(array(x), **_format_options)(x)
|
||
|
|
||
|
|
||
|
_typelessdata = [int_, float_, complex_, bool_]
|
||
|
|
||
|
|
||
|
def dtype_is_implied(dtype):
|
||
|
"""
|
||
|
Determine if the given dtype is implied by the representation of its values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype : dtype
|
||
|
Data type
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
implied : bool
|
||
|
True if the dtype is implied by the representation of its values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> np.core.arrayprint.dtype_is_implied(int)
|
||
|
True
|
||
|
>>> np.array([1, 2, 3], int)
|
||
|
array([1, 2, 3])
|
||
|
>>> np.core.arrayprint.dtype_is_implied(np.int8)
|
||
|
False
|
||
|
>>> np.array([1, 2, 3], np.int8)
|
||
|
array([1, 2, 3], dtype=int8)
|
||
|
"""
|
||
|
dtype = np.dtype(dtype)
|
||
|
if _format_options['legacy'] <= 113 and dtype.type == bool_:
|
||
|
return False
|
||
|
|
||
|
# not just void types can be structured, and names are not part of the repr
|
||
|
if dtype.names is not None:
|
||
|
return False
|
||
|
|
||
|
return dtype.type in _typelessdata
|
||
|
|
||
|
|
||
|
def dtype_short_repr(dtype):
|
||
|
"""
|
||
|
Convert a dtype to a short form which evaluates to the same dtype.
|
||
|
|
||
|
The intent is roughly that the following holds
|
||
|
|
||
|
>>> from numpy import *
|
||
|
>>> dt = np.int64([1, 2]).dtype
|
||
|
>>> assert eval(dtype_short_repr(dt)) == dt
|
||
|
"""
|
||
|
if type(dtype).__repr__ != np.dtype.__repr__:
|
||
|
# TODO: Custom repr for user DTypes, logic should likely move.
|
||
|
return repr(dtype)
|
||
|
if dtype.names is not None:
|
||
|
# structured dtypes give a list or tuple repr
|
||
|
return str(dtype)
|
||
|
elif issubclass(dtype.type, flexible):
|
||
|
# handle these separately so they don't give garbage like str256
|
||
|
return "'%s'" % str(dtype)
|
||
|
|
||
|
typename = dtype.name
|
||
|
# quote typenames which can't be represented as python variable names
|
||
|
if typename and not (typename[0].isalpha() and typename.isalnum()):
|
||
|
typename = repr(typename)
|
||
|
|
||
|
return typename
|
||
|
|
||
|
|
||
|
def _array_repr_implementation(
|
||
|
arr, max_line_width=None, precision=None, suppress_small=None,
|
||
|
array2string=array2string):
|
||
|
"""Internal version of array_repr() that allows overriding array2string."""
|
||
|
if max_line_width is None:
|
||
|
max_line_width = _format_options['linewidth']
|
||
|
|
||
|
if type(arr) is not ndarray:
|
||
|
class_name = type(arr).__name__
|
||
|
else:
|
||
|
class_name = "array"
|
||
|
|
||
|
skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0
|
||
|
|
||
|
prefix = class_name + "("
|
||
|
suffix = ")" if skipdtype else ","
|
||
|
|
||
|
if (_format_options['legacy'] <= 113 and
|
||
|
arr.shape == () and not arr.dtype.names):
|
||
|
lst = repr(arr.item())
|
||
|
elif arr.size > 0 or arr.shape == (0,):
|
||
|
lst = array2string(arr, max_line_width, precision, suppress_small,
|
||
|
', ', prefix, suffix=suffix)
|
||
|
else: # show zero-length shape unless it is (0,)
|
||
|
lst = "[], shape=%s" % (repr(arr.shape),)
|
||
|
|
||
|
arr_str = prefix + lst + suffix
|
||
|
|
||
|
if skipdtype:
|
||
|
return arr_str
|
||
|
|
||
|
dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype))
|
||
|
|
||
|
# compute whether we should put dtype on a new line: Do so if adding the
|
||
|
# dtype would extend the last line past max_line_width.
|
||
|
# Note: This line gives the correct result even when rfind returns -1.
|
||
|
last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1)
|
||
|
spacer = " "
|
||
|
if _format_options['legacy'] <= 113:
|
||
|
if issubclass(arr.dtype.type, flexible):
|
||
|
spacer = '\n' + ' '*len(class_name + "(")
|
||
|
elif last_line_len + len(dtype_str) + 1 > max_line_width:
|
||
|
spacer = '\n' + ' '*len(class_name + "(")
|
||
|
|
||
|
return arr_str + spacer + dtype_str
|
||
|
|
||
|
|
||
|
def _array_repr_dispatcher(
|
||
|
arr, max_line_width=None, precision=None, suppress_small=None):
|
||
|
return (arr,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_array_repr_dispatcher, module='numpy')
|
||
|
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
|
||
|
"""
|
||
|
Return the string representation of an array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray
|
||
|
Input array.
|
||
|
max_line_width : int, optional
|
||
|
Inserts newlines if text is longer than `max_line_width`.
|
||
|
Defaults to ``numpy.get_printoptions()['linewidth']``.
|
||
|
precision : int, optional
|
||
|
Floating point precision.
|
||
|
Defaults to ``numpy.get_printoptions()['precision']``.
|
||
|
suppress_small : bool, optional
|
||
|
Represent numbers "very close" to zero as zero; default is False.
|
||
|
Very close is defined by precision: if the precision is 8, e.g.,
|
||
|
numbers smaller (in absolute value) than 5e-9 are represented as
|
||
|
zero.
|
||
|
Defaults to ``numpy.get_printoptions()['suppress']``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
string : str
|
||
|
The string representation of an array.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
array_str, array2string, set_printoptions
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> np.array_repr(np.array([1,2]))
|
||
|
'array([1, 2])'
|
||
|
>>> np.array_repr(np.ma.array([0.]))
|
||
|
'MaskedArray([0.])'
|
||
|
>>> np.array_repr(np.array([], np.int32))
|
||
|
'array([], dtype=int32)'
|
||
|
|
||
|
>>> x = np.array([1e-6, 4e-7, 2, 3])
|
||
|
>>> np.array_repr(x, precision=6, suppress_small=True)
|
||
|
'array([0.000001, 0. , 2. , 3. ])'
|
||
|
|
||
|
"""
|
||
|
return _array_repr_implementation(
|
||
|
arr, max_line_width, precision, suppress_small)
|
||
|
|
||
|
|
||
|
@_recursive_guard()
|
||
|
def _guarded_repr_or_str(v):
|
||
|
if isinstance(v, bytes):
|
||
|
return repr(v)
|
||
|
return str(v)
|
||
|
|
||
|
|
||
|
def _array_str_implementation(
|
||
|
a, max_line_width=None, precision=None, suppress_small=None,
|
||
|
array2string=array2string):
|
||
|
"""Internal version of array_str() that allows overriding array2string."""
|
||
|
if (_format_options['legacy'] <= 113 and
|
||
|
a.shape == () and not a.dtype.names):
|
||
|
return str(a.item())
|
||
|
|
||
|
# the str of 0d arrays is a special case: It should appear like a scalar,
|
||
|
# so floats are not truncated by `precision`, and strings are not wrapped
|
||
|
# in quotes. So we return the str of the scalar value.
|
||
|
if a.shape == ():
|
||
|
# obtain a scalar and call str on it, avoiding problems for subclasses
|
||
|
# for which indexing with () returns a 0d instead of a scalar by using
|
||
|
# ndarray's getindex. Also guard against recursive 0d object arrays.
|
||
|
return _guarded_repr_or_str(np.ndarray.__getitem__(a, ()))
|
||
|
|
||
|
return array2string(a, max_line_width, precision, suppress_small, ' ', "")
|
||
|
|
||
|
|
||
|
def _array_str_dispatcher(
|
||
|
a, max_line_width=None, precision=None, suppress_small=None):
|
||
|
return (a,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_array_str_dispatcher, module='numpy')
|
||
|
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
|
||
|
"""
|
||
|
Return a string representation of the data in an array.
|
||
|
|
||
|
The data in the array is returned as a single string. This function is
|
||
|
similar to `array_repr`, the difference being that `array_repr` also
|
||
|
returns information on the kind of array and its data type.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : ndarray
|
||
|
Input array.
|
||
|
max_line_width : int, optional
|
||
|
Inserts newlines if text is longer than `max_line_width`.
|
||
|
Defaults to ``numpy.get_printoptions()['linewidth']``.
|
||
|
precision : int, optional
|
||
|
Floating point precision.
|
||
|
Defaults to ``numpy.get_printoptions()['precision']``.
|
||
|
suppress_small : bool, optional
|
||
|
Represent numbers "very close" to zero as zero; default is False.
|
||
|
Very close is defined by precision: if the precision is 8, e.g.,
|
||
|
numbers smaller (in absolute value) than 5e-9 are represented as
|
||
|
zero.
|
||
|
Defaults to ``numpy.get_printoptions()['suppress']``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
array2string, array_repr, set_printoptions
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> np.array_str(np.arange(3))
|
||
|
'[0 1 2]'
|
||
|
|
||
|
"""
|
||
|
return _array_str_implementation(
|
||
|
a, max_line_width, precision, suppress_small)
|
||
|
|
||
|
|
||
|
# needed if __array_function__ is disabled
|
||
|
_array2string_impl = getattr(array2string, '__wrapped__', array2string)
|
||
|
_default_array_str = functools.partial(_array_str_implementation,
|
||
|
array2string=_array2string_impl)
|
||
|
_default_array_repr = functools.partial(_array_repr_implementation,
|
||
|
array2string=_array2string_impl)
|
||
|
|
||
|
|
||
|
def set_string_function(f, repr=True):
|
||
|
"""
|
||
|
Set a Python function to be used when pretty printing arrays.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
f : function or None
|
||
|
Function to be used to pretty print arrays. The function should expect
|
||
|
a single array argument and return a string of the representation of
|
||
|
the array. If None, the function is reset to the default NumPy function
|
||
|
to print arrays.
|
||
|
repr : bool, optional
|
||
|
If True (default), the function for pretty printing (``__repr__``)
|
||
|
is set, if False the function that returns the default string
|
||
|
representation (``__str__``) is set.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
set_printoptions, get_printoptions
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def pprint(arr):
|
||
|
... return 'HA! - What are you going to do now?'
|
||
|
...
|
||
|
>>> np.set_string_function(pprint)
|
||
|
>>> a = np.arange(10)
|
||
|
>>> a
|
||
|
HA! - What are you going to do now?
|
||
|
>>> _ = a
|
||
|
>>> # [0 1 2 3 4 5 6 7 8 9]
|
||
|
|
||
|
We can reset the function to the default:
|
||
|
|
||
|
>>> np.set_string_function(None)
|
||
|
>>> a
|
||
|
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
||
|
|
||
|
`repr` affects either pretty printing or normal string representation.
|
||
|
Note that ``__repr__`` is still affected by setting ``__str__``
|
||
|
because the width of each array element in the returned string becomes
|
||
|
equal to the length of the result of ``__str__()``.
|
||
|
|
||
|
>>> x = np.arange(4)
|
||
|
>>> np.set_string_function(lambda x:'random', repr=False)
|
||
|
>>> x.__str__()
|
||
|
'random'
|
||
|
>>> x.__repr__()
|
||
|
'array([0, 1, 2, 3])'
|
||
|
|
||
|
"""
|
||
|
if f is None:
|
||
|
if repr:
|
||
|
return multiarray.set_string_function(_default_array_repr, 1)
|
||
|
else:
|
||
|
return multiarray.set_string_function(_default_array_str, 0)
|
||
|
else:
|
||
|
return multiarray.set_string_function(f, repr)
|