342 lines
12 KiB
Python
342 lines
12 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
DatetimeIndex,
|
||
|
Index,
|
||
|
Period,
|
||
|
PeriodIndex,
|
||
|
Series,
|
||
|
Timedelta,
|
||
|
TimedeltaIndex,
|
||
|
Timestamp,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.tests.copy_view.util import get_array
|
||
|
|
||
|
# -----------------------------------------------------------------------------
|
||
|
# Copy/view behaviour for Series / DataFrame constructors
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, "int64"])
|
||
|
def test_series_from_series(dtype, using_copy_on_write):
|
||
|
# Case: constructing a Series from another Series object follows CoW rules:
|
||
|
# a new object is returned and thus mutations are not propagated
|
||
|
ser = Series([1, 2, 3], name="name")
|
||
|
|
||
|
# default is copy=False -> new Series is a shallow copy / view of original
|
||
|
result = Series(ser, dtype=dtype)
|
||
|
|
||
|
# the shallow copy still shares memory
|
||
|
assert np.shares_memory(get_array(ser), get_array(result))
|
||
|
|
||
|
if using_copy_on_write:
|
||
|
assert result._mgr.blocks[0].refs.has_reference()
|
||
|
|
||
|
if using_copy_on_write:
|
||
|
# mutating new series copy doesn't mutate original
|
||
|
result.iloc[0] = 0
|
||
|
assert ser.iloc[0] == 1
|
||
|
# mutating triggered a copy-on-write -> no longer shares memory
|
||
|
assert not np.shares_memory(get_array(ser), get_array(result))
|
||
|
else:
|
||
|
# mutating shallow copy does mutate original
|
||
|
result.iloc[0] = 0
|
||
|
assert ser.iloc[0] == 0
|
||
|
# and still shares memory
|
||
|
assert np.shares_memory(get_array(ser), get_array(result))
|
||
|
|
||
|
# the same when modifying the parent
|
||
|
result = Series(ser, dtype=dtype)
|
||
|
|
||
|
if using_copy_on_write:
|
||
|
# mutating original doesn't mutate new series
|
||
|
ser.iloc[0] = 0
|
||
|
assert result.iloc[0] == 1
|
||
|
else:
|
||
|
# mutating original does mutate shallow copy
|
||
|
ser.iloc[0] = 0
|
||
|
assert result.iloc[0] == 0
|
||
|
|
||
|
|
||
|
def test_series_from_series_with_reindex(using_copy_on_write):
|
||
|
# Case: constructing a Series from another Series with specifying an index
|
||
|
# that potentially requires a reindex of the values
|
||
|
ser = Series([1, 2, 3], name="name")
|
||
|
|
||
|
# passing an index that doesn't actually require a reindex of the values
|
||
|
# -> without CoW we get an actual mutating view
|
||
|
for index in [
|
||
|
ser.index,
|
||
|
ser.index.copy(),
|
||
|
list(ser.index),
|
||
|
ser.index.rename("idx"),
|
||
|
]:
|
||
|
result = Series(ser, index=index)
|
||
|
assert np.shares_memory(ser.values, result.values)
|
||
|
result.iloc[0] = 0
|
||
|
if using_copy_on_write:
|
||
|
assert ser.iloc[0] == 1
|
||
|
else:
|
||
|
assert ser.iloc[0] == 0
|
||
|
|
||
|
# ensure that if an actual reindex is needed, we don't have any refs
|
||
|
# (mutating the result wouldn't trigger CoW)
|
||
|
result = Series(ser, index=[0, 1, 2, 3])
|
||
|
assert not np.shares_memory(ser.values, result.values)
|
||
|
if using_copy_on_write:
|
||
|
assert not result._mgr.blocks[0].refs.has_reference()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("fastpath", [False, True])
|
||
|
@pytest.mark.parametrize("dtype", [None, "int64"])
|
||
|
@pytest.mark.parametrize("idx", [None, pd.RangeIndex(start=0, stop=3, step=1)])
|
||
|
@pytest.mark.parametrize(
|
||
|
"arr", [np.array([1, 2, 3], dtype="int64"), pd.array([1, 2, 3], dtype="Int64")]
|
||
|
)
|
||
|
def test_series_from_array(using_copy_on_write, idx, dtype, fastpath, arr):
|
||
|
if idx is None or dtype is not None:
|
||
|
fastpath = False
|
||
|
ser = Series(arr, dtype=dtype, index=idx, fastpath=fastpath)
|
||
|
ser_orig = ser.copy()
|
||
|
data = getattr(arr, "_data", arr)
|
||
|
if using_copy_on_write:
|
||
|
assert not np.shares_memory(get_array(ser), data)
|
||
|
else:
|
||
|
assert np.shares_memory(get_array(ser), data)
|
||
|
|
||
|
arr[0] = 100
|
||
|
if using_copy_on_write:
|
||
|
tm.assert_series_equal(ser, ser_orig)
|
||
|
else:
|
||
|
expected = Series([100, 2, 3], dtype=dtype if dtype is not None else arr.dtype)
|
||
|
tm.assert_series_equal(ser, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("copy", [True, False, None])
|
||
|
def test_series_from_array_different_dtype(using_copy_on_write, copy):
|
||
|
arr = np.array([1, 2, 3], dtype="int64")
|
||
|
ser = Series(arr, dtype="int32", copy=copy)
|
||
|
assert not np.shares_memory(get_array(ser), arr)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"idx",
|
||
|
[
|
||
|
Index([1, 2]),
|
||
|
DatetimeIndex([Timestamp("2019-12-31"), Timestamp("2020-12-31")]),
|
||
|
PeriodIndex([Period("2019-12-31"), Period("2020-12-31")]),
|
||
|
TimedeltaIndex([Timedelta("1 days"), Timedelta("2 days")]),
|
||
|
],
|
||
|
)
|
||
|
def test_series_from_index(using_copy_on_write, idx):
|
||
|
ser = Series(idx)
|
||
|
expected = idx.copy(deep=True)
|
||
|
if using_copy_on_write:
|
||
|
assert np.shares_memory(get_array(ser), get_array(idx))
|
||
|
assert not ser._mgr._has_no_reference(0)
|
||
|
else:
|
||
|
assert not np.shares_memory(get_array(ser), get_array(idx))
|
||
|
ser.iloc[0] = ser.iloc[1]
|
||
|
tm.assert_index_equal(idx, expected)
|
||
|
|
||
|
|
||
|
def test_series_from_index_different_dtypes(using_copy_on_write):
|
||
|
idx = Index([1, 2, 3], dtype="int64")
|
||
|
ser = Series(idx, dtype="int32")
|
||
|
assert not np.shares_memory(get_array(ser), get_array(idx))
|
||
|
if using_copy_on_write:
|
||
|
assert ser._mgr._has_no_reference(0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("fastpath", [False, True])
|
||
|
@pytest.mark.parametrize("dtype", [None, "int64"])
|
||
|
@pytest.mark.parametrize("idx", [None, pd.RangeIndex(start=0, stop=3, step=1)])
|
||
|
def test_series_from_block_manager(using_copy_on_write, idx, dtype, fastpath):
|
||
|
ser = Series([1, 2, 3], dtype="int64")
|
||
|
ser_orig = ser.copy()
|
||
|
ser2 = Series(ser._mgr, dtype=dtype, fastpath=fastpath, index=idx)
|
||
|
assert np.shares_memory(get_array(ser), get_array(ser2))
|
||
|
if using_copy_on_write:
|
||
|
assert not ser2._mgr._has_no_reference(0)
|
||
|
|
||
|
ser2.iloc[0] = 100
|
||
|
if using_copy_on_write:
|
||
|
tm.assert_series_equal(ser, ser_orig)
|
||
|
else:
|
||
|
expected = Series([100, 2, 3])
|
||
|
tm.assert_series_equal(ser, expected)
|
||
|
|
||
|
|
||
|
def test_series_from_block_manager_different_dtype(using_copy_on_write):
|
||
|
ser = Series([1, 2, 3], dtype="int64")
|
||
|
ser2 = Series(ser._mgr, dtype="int32")
|
||
|
assert not np.shares_memory(get_array(ser), get_array(ser2))
|
||
|
if using_copy_on_write:
|
||
|
assert ser2._mgr._has_no_reference(0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("func", [lambda x: x, lambda x: x._mgr])
|
||
|
@pytest.mark.parametrize("columns", [None, ["a"]])
|
||
|
def test_dataframe_constructor_mgr_or_df(using_copy_on_write, columns, func):
|
||
|
df = DataFrame({"a": [1, 2, 3]})
|
||
|
df_orig = df.copy()
|
||
|
|
||
|
new_df = DataFrame(func(df))
|
||
|
|
||
|
assert np.shares_memory(get_array(df, "a"), get_array(new_df, "a"))
|
||
|
new_df.iloc[0] = 100
|
||
|
|
||
|
if using_copy_on_write:
|
||
|
assert not np.shares_memory(get_array(df, "a"), get_array(new_df, "a"))
|
||
|
tm.assert_frame_equal(df, df_orig)
|
||
|
else:
|
||
|
assert np.shares_memory(get_array(df, "a"), get_array(new_df, "a"))
|
||
|
tm.assert_frame_equal(df, new_df)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, "int64", "Int64"])
|
||
|
@pytest.mark.parametrize("index", [None, [0, 1, 2]])
|
||
|
@pytest.mark.parametrize("columns", [None, ["a", "b"], ["a", "b", "c"]])
|
||
|
def test_dataframe_from_dict_of_series(
|
||
|
request, using_copy_on_write, columns, index, dtype
|
||
|
):
|
||
|
# Case: constructing a DataFrame from Series objects with copy=False
|
||
|
# has to do a lazy following CoW rules
|
||
|
# (the default for DataFrame(dict) is still to copy to ensure consolidation)
|
||
|
s1 = Series([1, 2, 3])
|
||
|
s2 = Series([4, 5, 6])
|
||
|
s1_orig = s1.copy()
|
||
|
expected = DataFrame(
|
||
|
{"a": [1, 2, 3], "b": [4, 5, 6]}, index=index, columns=columns, dtype=dtype
|
||
|
)
|
||
|
|
||
|
result = DataFrame(
|
||
|
{"a": s1, "b": s2}, index=index, columns=columns, dtype=dtype, copy=False
|
||
|
)
|
||
|
|
||
|
# the shallow copy still shares memory
|
||
|
assert np.shares_memory(get_array(result, "a"), get_array(s1))
|
||
|
|
||
|
# mutating the new dataframe doesn't mutate original
|
||
|
result.iloc[0, 0] = 10
|
||
|
if using_copy_on_write:
|
||
|
assert not np.shares_memory(get_array(result, "a"), get_array(s1))
|
||
|
tm.assert_series_equal(s1, s1_orig)
|
||
|
else:
|
||
|
assert s1.iloc[0] == 10
|
||
|
|
||
|
# the same when modifying the parent series
|
||
|
s1 = Series([1, 2, 3])
|
||
|
s2 = Series([4, 5, 6])
|
||
|
result = DataFrame(
|
||
|
{"a": s1, "b": s2}, index=index, columns=columns, dtype=dtype, copy=False
|
||
|
)
|
||
|
s1.iloc[0] = 10
|
||
|
if using_copy_on_write:
|
||
|
assert not np.shares_memory(get_array(result, "a"), get_array(s1))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
else:
|
||
|
assert result.iloc[0, 0] == 10
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, "int64"])
|
||
|
def test_dataframe_from_dict_of_series_with_reindex(dtype):
|
||
|
# Case: constructing a DataFrame from Series objects with copy=False
|
||
|
# and passing an index that requires an actual (no-view) reindex -> need
|
||
|
# to ensure the result doesn't have refs set up to unnecessarily trigger
|
||
|
# a copy on write
|
||
|
s1 = Series([1, 2, 3])
|
||
|
s2 = Series([4, 5, 6])
|
||
|
df = DataFrame({"a": s1, "b": s2}, index=[1, 2, 3], dtype=dtype, copy=False)
|
||
|
|
||
|
# df should own its memory, so mutating shouldn't trigger a copy
|
||
|
arr_before = get_array(df, "a")
|
||
|
assert not np.shares_memory(arr_before, get_array(s1))
|
||
|
df.iloc[0, 0] = 100
|
||
|
arr_after = get_array(df, "a")
|
||
|
assert np.shares_memory(arr_before, arr_after)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("cons", [Series, Index])
|
||
|
@pytest.mark.parametrize(
|
||
|
"data, dtype", [([1, 2], None), ([1, 2], "int64"), (["a", "b"], None)]
|
||
|
)
|
||
|
def test_dataframe_from_series_or_index(using_copy_on_write, data, dtype, cons):
|
||
|
obj = cons(data, dtype=dtype)
|
||
|
obj_orig = obj.copy()
|
||
|
df = DataFrame(obj, dtype=dtype)
|
||
|
assert np.shares_memory(get_array(obj), get_array(df, 0))
|
||
|
if using_copy_on_write:
|
||
|
assert not df._mgr._has_no_reference(0)
|
||
|
|
||
|
df.iloc[0, 0] = data[-1]
|
||
|
if using_copy_on_write:
|
||
|
tm.assert_equal(obj, obj_orig)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("cons", [Series, Index])
|
||
|
def test_dataframe_from_series_or_index_different_dtype(using_copy_on_write, cons):
|
||
|
obj = cons([1, 2], dtype="int64")
|
||
|
df = DataFrame(obj, dtype="int32")
|
||
|
assert not np.shares_memory(get_array(obj), get_array(df, 0))
|
||
|
if using_copy_on_write:
|
||
|
assert df._mgr._has_no_reference(0)
|
||
|
|
||
|
|
||
|
def test_dataframe_from_series_infer_datetime(using_copy_on_write):
|
||
|
ser = Series([Timestamp("2019-12-31"), Timestamp("2020-12-31")], dtype=object)
|
||
|
df = DataFrame(ser)
|
||
|
assert not np.shares_memory(get_array(ser), get_array(df, 0))
|
||
|
if using_copy_on_write:
|
||
|
assert df._mgr._has_no_reference(0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("index", [None, [0, 1, 2]])
|
||
|
def test_dataframe_from_dict_of_series_with_dtype(index):
|
||
|
# Variant of above, but now passing a dtype that causes a copy
|
||
|
# -> need to ensure the result doesn't have refs set up to unnecessarily
|
||
|
# trigger a copy on write
|
||
|
s1 = Series([1.0, 2.0, 3.0])
|
||
|
s2 = Series([4, 5, 6])
|
||
|
df = DataFrame({"a": s1, "b": s2}, index=index, dtype="int64", copy=False)
|
||
|
|
||
|
# df should own its memory, so mutating shouldn't trigger a copy
|
||
|
arr_before = get_array(df, "a")
|
||
|
assert not np.shares_memory(arr_before, get_array(s1))
|
||
|
df.iloc[0, 0] = 100
|
||
|
arr_after = get_array(df, "a")
|
||
|
assert np.shares_memory(arr_before, arr_after)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("copy", [False, None, True])
|
||
|
def test_frame_from_numpy_array(using_copy_on_write, copy, using_array_manager):
|
||
|
arr = np.array([[1, 2], [3, 4]])
|
||
|
df = DataFrame(arr, copy=copy)
|
||
|
|
||
|
if (
|
||
|
using_copy_on_write
|
||
|
and copy is not False
|
||
|
or copy is True
|
||
|
or (using_array_manager and copy is None)
|
||
|
):
|
||
|
assert not np.shares_memory(get_array(df, 0), arr)
|
||
|
else:
|
||
|
assert np.shares_memory(get_array(df, 0), arr)
|
||
|
|
||
|
|
||
|
def test_dataframe_from_records_with_dataframe(using_copy_on_write):
|
||
|
df = DataFrame({"a": [1, 2, 3]})
|
||
|
df_orig = df.copy()
|
||
|
df2 = DataFrame.from_records(df)
|
||
|
if using_copy_on_write:
|
||
|
assert not df._mgr._has_no_reference(0)
|
||
|
assert np.shares_memory(get_array(df, "a"), get_array(df2, "a"))
|
||
|
df2.iloc[0, 0] = 100
|
||
|
if using_copy_on_write:
|
||
|
tm.assert_frame_equal(df, df_orig)
|
||
|
else:
|
||
|
tm.assert_frame_equal(df, df2)
|