414 lines
13 KiB
Python
414 lines
13 KiB
Python
|
""" Utility functions for sparse matrix module
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
import operator
|
||
|
import numpy as np
|
||
|
from scipy._lib._util import prod
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
|
||
|
__all__ = ['upcast', 'getdtype', 'getdata', 'isscalarlike', 'isintlike',
|
||
|
'isshape', 'issequence', 'isdense', 'ismatrix', 'get_sum_dtype']
|
||
|
|
||
|
supported_dtypes = [np.bool_, np.byte, np.ubyte, np.short, np.ushort, np.intc,
|
||
|
np.uintc, np.int_, np.uint, np.longlong, np.ulonglong,
|
||
|
np.single, np.double,
|
||
|
np.longdouble, np.csingle, np.cdouble, np.clongdouble]
|
||
|
|
||
|
_upcast_memo = {}
|
||
|
|
||
|
|
||
|
def upcast(*args):
|
||
|
"""Returns the nearest supported sparse dtype for the
|
||
|
combination of one or more types.
|
||
|
|
||
|
upcast(t0, t1, ..., tn) -> T where T is a supported dtype
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> upcast('int32')
|
||
|
<type 'numpy.int32'>
|
||
|
>>> upcast('bool')
|
||
|
<type 'numpy.bool_'>
|
||
|
>>> upcast('int32','float32')
|
||
|
<type 'numpy.float64'>
|
||
|
>>> upcast('bool',complex,float)
|
||
|
<type 'numpy.complex128'>
|
||
|
|
||
|
"""
|
||
|
|
||
|
t = _upcast_memo.get(hash(args))
|
||
|
if t is not None:
|
||
|
return t
|
||
|
|
||
|
upcast = np.result_type(*args)
|
||
|
|
||
|
for t in supported_dtypes:
|
||
|
if np.can_cast(upcast, t):
|
||
|
_upcast_memo[hash(args)] = t
|
||
|
return t
|
||
|
|
||
|
raise TypeError('no supported conversion for types: %r' % (args,))
|
||
|
|
||
|
|
||
|
def upcast_char(*args):
|
||
|
"""Same as `upcast` but taking dtype.char as input (faster)."""
|
||
|
t = _upcast_memo.get(args)
|
||
|
if t is not None:
|
||
|
return t
|
||
|
t = upcast(*map(np.dtype, args))
|
||
|
_upcast_memo[args] = t
|
||
|
return t
|
||
|
|
||
|
|
||
|
def upcast_scalar(dtype, scalar):
|
||
|
"""Determine data type for binary operation between an array of
|
||
|
type `dtype` and a scalar.
|
||
|
"""
|
||
|
return (np.array([0], dtype=dtype) * scalar).dtype
|
||
|
|
||
|
|
||
|
def downcast_intp_index(arr):
|
||
|
"""
|
||
|
Down-cast index array to np.intp dtype if it is of a larger dtype.
|
||
|
|
||
|
Raise an error if the array contains a value that is too large for
|
||
|
intp.
|
||
|
"""
|
||
|
if arr.dtype.itemsize > np.dtype(np.intp).itemsize:
|
||
|
if arr.size == 0:
|
||
|
return arr.astype(np.intp)
|
||
|
maxval = arr.max()
|
||
|
minval = arr.min()
|
||
|
if maxval > np.iinfo(np.intp).max or minval < np.iinfo(np.intp).min:
|
||
|
raise ValueError("Cannot deal with arrays with indices larger "
|
||
|
"than the machine maximum address size "
|
||
|
"(e.g. 64-bit indices on 32-bit machine).")
|
||
|
return arr.astype(np.intp)
|
||
|
return arr
|
||
|
|
||
|
|
||
|
def to_native(A):
|
||
|
"""
|
||
|
Ensure that the data type of the NumPy array `A` has native byte order.
|
||
|
|
||
|
`A` must be a NumPy array. If the data type of `A` does not have native
|
||
|
byte order, a copy of `A` with a native byte order is returned. Otherwise
|
||
|
`A` is returned.
|
||
|
"""
|
||
|
dt = A.dtype
|
||
|
if dt.isnative:
|
||
|
# Don't call `asarray()` if A is already native, to avoid unnecessarily
|
||
|
# creating a view of the input array.
|
||
|
return A
|
||
|
return np.asarray(A, dtype=dt.newbyteorder('native'))
|
||
|
|
||
|
|
||
|
def getdtype(dtype, a=None, default=None):
|
||
|
"""Function used to simplify argument processing. If 'dtype' is not
|
||
|
specified (is None), returns a.dtype; otherwise returns a np.dtype
|
||
|
object created from the specified dtype argument. If 'dtype' and 'a'
|
||
|
are both None, construct a data type out of the 'default' parameter.
|
||
|
Furthermore, 'dtype' must be in 'allowed' set.
|
||
|
"""
|
||
|
# TODO is this really what we want?
|
||
|
if dtype is None:
|
||
|
try:
|
||
|
newdtype = a.dtype
|
||
|
except AttributeError as e:
|
||
|
if default is not None:
|
||
|
newdtype = np.dtype(default)
|
||
|
else:
|
||
|
raise TypeError("could not interpret data type") from e
|
||
|
else:
|
||
|
newdtype = np.dtype(dtype)
|
||
|
if newdtype == np.object_:
|
||
|
raise ValueError(
|
||
|
"object dtype is not supported by sparse matrices"
|
||
|
)
|
||
|
|
||
|
return newdtype
|
||
|
|
||
|
|
||
|
def getdata(obj, dtype=None, copy=False):
|
||
|
"""
|
||
|
This is a wrapper of `np.array(obj, dtype=dtype, copy=copy)`
|
||
|
that will generate a warning if the result is an object array.
|
||
|
"""
|
||
|
data = np.array(obj, dtype=dtype, copy=copy)
|
||
|
# Defer to getdtype for checking that the dtype is OK.
|
||
|
# This is called for the validation only; we don't need the return value.
|
||
|
getdtype(data.dtype)
|
||
|
return data
|
||
|
|
||
|
|
||
|
def get_index_dtype(arrays=(), maxval=None, check_contents=False):
|
||
|
"""
|
||
|
Based on input (integer) arrays `a`, determine a suitable index data
|
||
|
type that can hold the data in the arrays.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arrays : tuple of array_like
|
||
|
Input arrays whose types/contents to check
|
||
|
maxval : float, optional
|
||
|
Maximum value needed
|
||
|
check_contents : bool, optional
|
||
|
Whether to check the values in the arrays and not just their types.
|
||
|
Default: False (check only the types)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dtype : dtype
|
||
|
Suitable index data type (int32 or int64)
|
||
|
|
||
|
"""
|
||
|
|
||
|
int32min = np.int32(np.iinfo(np.int32).min)
|
||
|
int32max = np.int32(np.iinfo(np.int32).max)
|
||
|
|
||
|
# not using intc directly due to misinteractions with pythran
|
||
|
dtype = np.int32 if np.intc().itemsize == 4 else np.int64
|
||
|
if maxval is not None:
|
||
|
maxval = np.int64(maxval)
|
||
|
if maxval > int32max:
|
||
|
dtype = np.int64
|
||
|
|
||
|
if isinstance(arrays, np.ndarray):
|
||
|
arrays = (arrays,)
|
||
|
|
||
|
for arr in arrays:
|
||
|
arr = np.asarray(arr)
|
||
|
if not np.can_cast(arr.dtype, np.int32):
|
||
|
if check_contents:
|
||
|
if arr.size == 0:
|
||
|
# a bigger type not needed
|
||
|
continue
|
||
|
elif np.issubdtype(arr.dtype, np.integer):
|
||
|
maxval = arr.max()
|
||
|
minval = arr.min()
|
||
|
if minval >= int32min and maxval <= int32max:
|
||
|
# a bigger type not needed
|
||
|
continue
|
||
|
|
||
|
dtype = np.int64
|
||
|
break
|
||
|
|
||
|
return dtype
|
||
|
|
||
|
|
||
|
def get_sum_dtype(dtype):
|
||
|
"""Mimic numpy's casting for np.sum"""
|
||
|
if dtype.kind == 'u' and np.can_cast(dtype, np.uint):
|
||
|
return np.uint
|
||
|
if np.can_cast(dtype, np.int_):
|
||
|
return np.int_
|
||
|
return dtype
|
||
|
|
||
|
|
||
|
def isscalarlike(x):
|
||
|
"""Is x either a scalar, an array scalar, or a 0-dim array?"""
|
||
|
return np.isscalar(x) or (isdense(x) and x.ndim == 0)
|
||
|
|
||
|
|
||
|
def isintlike(x):
|
||
|
"""Is x appropriate as an index into a sparse matrix? Returns True
|
||
|
if it can be cast safely to a machine int.
|
||
|
"""
|
||
|
# Fast-path check to eliminate non-scalar values. operator.index would
|
||
|
# catch this case too, but the exception catching is slow.
|
||
|
if np.ndim(x) != 0:
|
||
|
return False
|
||
|
try:
|
||
|
operator.index(x)
|
||
|
except (TypeError, ValueError):
|
||
|
try:
|
||
|
loose_int = bool(int(x) == x)
|
||
|
except (TypeError, ValueError):
|
||
|
return False
|
||
|
if loose_int:
|
||
|
msg = "Inexact indices into sparse matrices are not allowed"
|
||
|
raise ValueError(msg)
|
||
|
return loose_int
|
||
|
return True
|
||
|
|
||
|
|
||
|
def isshape(x, nonneg=False):
|
||
|
"""Is x a valid 2-tuple of dimensions?
|
||
|
|
||
|
If nonneg, also checks that the dimensions are non-negative.
|
||
|
"""
|
||
|
try:
|
||
|
# Assume it's a tuple of matrix dimensions (M, N)
|
||
|
(M, N) = x
|
||
|
except Exception:
|
||
|
return False
|
||
|
else:
|
||
|
if isintlike(M) and isintlike(N):
|
||
|
if np.ndim(M) == 0 and np.ndim(N) == 0:
|
||
|
if not nonneg or (M >= 0 and N >= 0):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def issequence(t):
|
||
|
return ((isinstance(t, (list, tuple)) and
|
||
|
(len(t) == 0 or np.isscalar(t[0]))) or
|
||
|
(isinstance(t, np.ndarray) and (t.ndim == 1)))
|
||
|
|
||
|
|
||
|
def ismatrix(t):
|
||
|
return ((isinstance(t, (list, tuple)) and
|
||
|
len(t) > 0 and issequence(t[0])) or
|
||
|
(isinstance(t, np.ndarray) and t.ndim == 2))
|
||
|
|
||
|
|
||
|
def isdense(x):
|
||
|
return isinstance(x, np.ndarray)
|
||
|
|
||
|
|
||
|
def validateaxis(axis):
|
||
|
if axis is not None:
|
||
|
axis_type = type(axis)
|
||
|
|
||
|
# In NumPy, you can pass in tuples for 'axis', but they are
|
||
|
# not very useful for sparse matrices given their limited
|
||
|
# dimensions, so let's make it explicit that they are not
|
||
|
# allowed to be passed in
|
||
|
if axis_type == tuple:
|
||
|
raise TypeError(("Tuples are not accepted for the 'axis' "
|
||
|
"parameter. Please pass in one of the "
|
||
|
"following: {-2, -1, 0, 1, None}."))
|
||
|
|
||
|
# If not a tuple, check that the provided axis is actually
|
||
|
# an integer and raise a TypeError similar to NumPy's
|
||
|
if not np.issubdtype(np.dtype(axis_type), np.integer):
|
||
|
raise TypeError("axis must be an integer, not {name}"
|
||
|
.format(name=axis_type.__name__))
|
||
|
|
||
|
if not (-2 <= axis <= 1):
|
||
|
raise ValueError("axis out of range")
|
||
|
|
||
|
|
||
|
def check_shape(args, current_shape=None):
|
||
|
"""Imitate numpy.matrix handling of shape arguments"""
|
||
|
if len(args) == 0:
|
||
|
raise TypeError("function missing 1 required positional argument: "
|
||
|
"'shape'")
|
||
|
elif len(args) == 1:
|
||
|
try:
|
||
|
shape_iter = iter(args[0])
|
||
|
except TypeError:
|
||
|
new_shape = (operator.index(args[0]), )
|
||
|
else:
|
||
|
new_shape = tuple(operator.index(arg) for arg in shape_iter)
|
||
|
else:
|
||
|
new_shape = tuple(operator.index(arg) for arg in args)
|
||
|
|
||
|
if current_shape is None:
|
||
|
if len(new_shape) != 2:
|
||
|
raise ValueError('shape must be a 2-tuple of positive integers')
|
||
|
elif any(d < 0 for d in new_shape):
|
||
|
raise ValueError("'shape' elements cannot be negative")
|
||
|
|
||
|
else:
|
||
|
# Check the current size only if needed
|
||
|
current_size = prod(current_shape)
|
||
|
|
||
|
# Check for negatives
|
||
|
negative_indexes = [i for i, x in enumerate(new_shape) if x < 0]
|
||
|
if len(negative_indexes) == 0:
|
||
|
new_size = prod(new_shape)
|
||
|
if new_size != current_size:
|
||
|
raise ValueError('cannot reshape array of size {} into shape {}'
|
||
|
.format(current_size, new_shape))
|
||
|
elif len(negative_indexes) == 1:
|
||
|
skip = negative_indexes[0]
|
||
|
specified = prod(new_shape[0:skip] + new_shape[skip+1:])
|
||
|
unspecified, remainder = divmod(current_size, specified)
|
||
|
if remainder != 0:
|
||
|
err_shape = tuple('newshape' if x < 0 else x for x in new_shape)
|
||
|
raise ValueError('cannot reshape array of size {} into shape {}'
|
||
|
''.format(current_size, err_shape))
|
||
|
new_shape = new_shape[0:skip] + (unspecified,) + new_shape[skip+1:]
|
||
|
else:
|
||
|
raise ValueError('can only specify one unknown dimension')
|
||
|
|
||
|
if len(new_shape) != 2:
|
||
|
raise ValueError('matrix shape must be two-dimensional')
|
||
|
|
||
|
return new_shape
|
||
|
|
||
|
|
||
|
def check_reshape_kwargs(kwargs):
|
||
|
"""Unpack keyword arguments for reshape function.
|
||
|
|
||
|
This is useful because keyword arguments after star arguments are not
|
||
|
allowed in Python 2, but star keyword arguments are. This function unpacks
|
||
|
'order' and 'copy' from the star keyword arguments (with defaults) and
|
||
|
throws an error for any remaining.
|
||
|
"""
|
||
|
|
||
|
order = kwargs.pop('order', 'C')
|
||
|
copy = kwargs.pop('copy', False)
|
||
|
if kwargs: # Some unused kwargs remain
|
||
|
raise TypeError('reshape() got unexpected keywords arguments: {}'
|
||
|
.format(', '.join(kwargs.keys())))
|
||
|
return order, copy
|
||
|
|
||
|
|
||
|
def is_pydata_spmatrix(m):
|
||
|
"""
|
||
|
Check whether object is pydata/sparse matrix, avoiding importing the module.
|
||
|
"""
|
||
|
base_cls = getattr(sys.modules.get('sparse'), 'SparseArray', None)
|
||
|
return base_cls is not None and isinstance(m, base_cls)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Wrappers for NumPy types that are deprecated
|
||
|
|
||
|
# Numpy versions of these functions raise deprecation warnings, the
|
||
|
# ones below do not.
|
||
|
|
||
|
def matrix(*args, **kwargs):
|
||
|
return np.array(*args, **kwargs).view(np.matrix)
|
||
|
|
||
|
|
||
|
def asmatrix(data, dtype=None):
|
||
|
if isinstance(data, np.matrix) and (dtype is None or data.dtype == dtype):
|
||
|
return data
|
||
|
return np.asarray(data, dtype=dtype).view(np.matrix)
|
||
|
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
def _todata(s: 'sp.spmatrix') -> np.ndarray:
|
||
|
"""Access nonzero values, possibly after summing duplicates.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
s : sparse matrix
|
||
|
Input sparse matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data: ndarray
|
||
|
Nonzero values of the array, with shape (s.nnz,)
|
||
|
|
||
|
"""
|
||
|
if isinstance(s, sp._data._data_matrix):
|
||
|
return s._deduped_data()
|
||
|
|
||
|
if isinstance(s, sp.dok_matrix):
|
||
|
return np.fromiter(s.values(), dtype=s.dtype, count=s.nnz)
|
||
|
|
||
|
if isinstance(s, sp.lil_matrix):
|
||
|
data = np.empty(s.nnz, dtype=s.dtype)
|
||
|
sp._csparsetools.lil_flatten_to_array(s.data, data)
|
||
|
return data
|
||
|
|
||
|
return s.tocoo()._deduped_data()
|