564 lines
20 KiB
Python
564 lines
20 KiB
Python
|
import os
|
||
|
import numpy as np
|
||
|
|
||
|
from .arpack import _arpack # type: ignore[attr-defined]
|
||
|
from . import eigsh
|
||
|
|
||
|
from scipy._lib._util import check_random_state
|
||
|
from scipy.sparse.linalg._interface import LinearOperator, aslinearoperator
|
||
|
from scipy.sparse.linalg._eigen.lobpcg import lobpcg # type: ignore[no-redef]
|
||
|
if os.environ.get("SCIPY_USE_PROPACK"):
|
||
|
from scipy.sparse.linalg._svdp import _svdp
|
||
|
HAS_PROPACK = True
|
||
|
else:
|
||
|
HAS_PROPACK = False
|
||
|
from scipy.linalg import svd
|
||
|
|
||
|
arpack_int = _arpack.timing.nbx.dtype
|
||
|
__all__ = ['svds']
|
||
|
|
||
|
|
||
|
def _herm(x):
|
||
|
return x.T.conj()
|
||
|
|
||
|
|
||
|
def _iv(A, k, ncv, tol, which, v0, maxiter,
|
||
|
return_singular, solver, random_state):
|
||
|
|
||
|
# input validation/standardization for `solver`
|
||
|
# out of order because it's needed for other parameters
|
||
|
solver = str(solver).lower()
|
||
|
solvers = {"arpack", "lobpcg", "propack"}
|
||
|
if solver not in solvers:
|
||
|
raise ValueError(f"solver must be one of {solvers}.")
|
||
|
|
||
|
# input validation/standardization for `A`
|
||
|
A = aslinearoperator(A) # this takes care of some input validation
|
||
|
if not (np.issubdtype(A.dtype, np.complexfloating)
|
||
|
or np.issubdtype(A.dtype, np.floating)):
|
||
|
message = "`A` must be of floating or complex floating data type."
|
||
|
raise ValueError(message)
|
||
|
if np.prod(A.shape) == 0:
|
||
|
message = "`A` must not be empty."
|
||
|
raise ValueError(message)
|
||
|
|
||
|
# input validation/standardization for `k`
|
||
|
kmax = min(A.shape) if solver == 'propack' else min(A.shape) - 1
|
||
|
if int(k) != k or not (0 < k <= kmax):
|
||
|
message = "`k` must be an integer satisfying `0 < k < min(A.shape)`."
|
||
|
raise ValueError(message)
|
||
|
k = int(k)
|
||
|
|
||
|
# input validation/standardization for `ncv`
|
||
|
if solver == "arpack" and ncv is not None:
|
||
|
if int(ncv) != ncv or not (k < ncv < min(A.shape)):
|
||
|
message = ("`ncv` must be an integer satisfying "
|
||
|
"`k < ncv < min(A.shape)`.")
|
||
|
raise ValueError(message)
|
||
|
ncv = int(ncv)
|
||
|
|
||
|
# input validation/standardization for `tol`
|
||
|
if tol < 0 or not np.isfinite(tol):
|
||
|
message = "`tol` must be a non-negative floating point value."
|
||
|
raise ValueError(message)
|
||
|
tol = float(tol)
|
||
|
|
||
|
# input validation/standardization for `which`
|
||
|
which = str(which).upper()
|
||
|
whichs = {'LM', 'SM'}
|
||
|
if which not in whichs:
|
||
|
raise ValueError(f"`which` must be in {whichs}.")
|
||
|
|
||
|
# input validation/standardization for `v0`
|
||
|
if v0 is not None:
|
||
|
v0 = np.atleast_1d(v0)
|
||
|
if not (np.issubdtype(v0.dtype, np.complexfloating)
|
||
|
or np.issubdtype(v0.dtype, np.floating)):
|
||
|
message = ("`v0` must be of floating or complex floating "
|
||
|
"data type.")
|
||
|
raise ValueError(message)
|
||
|
|
||
|
shape = (A.shape[0],) if solver == 'propack' else (min(A.shape),)
|
||
|
if v0.shape != shape:
|
||
|
message = f"`v0` must have shape {shape}."
|
||
|
raise ValueError(message)
|
||
|
|
||
|
# input validation/standardization for `maxiter`
|
||
|
if maxiter is not None and (int(maxiter) != maxiter or maxiter <= 0):
|
||
|
message = "`maxiter` must be a positive integer."
|
||
|
raise ValueError(message)
|
||
|
maxiter = int(maxiter) if maxiter is not None else maxiter
|
||
|
|
||
|
# input validation/standardization for `return_singular_vectors`
|
||
|
# not going to be flexible with this; too complicated for little gain
|
||
|
rs_options = {True, False, "vh", "u"}
|
||
|
if return_singular not in rs_options:
|
||
|
raise ValueError(f"`return_singular_vectors` must be in {rs_options}.")
|
||
|
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
return (A, k, ncv, tol, which, v0, maxiter,
|
||
|
return_singular, solver, random_state)
|
||
|
|
||
|
|
||
|
def svds(A, k=6, ncv=None, tol=0, which='LM', v0=None,
|
||
|
maxiter=None, return_singular_vectors=True,
|
||
|
solver='arpack', random_state=None, options=None):
|
||
|
"""
|
||
|
Partial singular value decomposition of a sparse matrix.
|
||
|
|
||
|
Compute the largest or smallest `k` singular values and corresponding
|
||
|
singular vectors of a sparse matrix `A`. The order in which the singular
|
||
|
values are returned is not guaranteed.
|
||
|
|
||
|
In the descriptions below, let ``M, N = A.shape``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : ndarray, sparse matrix, or LinearOperator
|
||
|
Matrix to decompose of a floating point numeric dtype.
|
||
|
k : int, default: 6
|
||
|
Number of singular values and singular vectors to compute.
|
||
|
Must satisfy ``1 <= k <= kmax``, where ``kmax=min(M, N)`` for
|
||
|
``solver='propack'`` and ``kmax=min(M, N) - 1`` otherwise.
|
||
|
ncv : int, optional
|
||
|
When ``solver='arpack'``, this is the number of Lanczos vectors
|
||
|
generated. See :ref:`'arpack' <sparse.linalg.svds-arpack>` for details.
|
||
|
When ``solver='lobpcg'`` or ``solver='propack'``, this parameter is
|
||
|
ignored.
|
||
|
tol : float, optional
|
||
|
Tolerance for singular values. Zero (default) means machine precision.
|
||
|
which : {'LM', 'SM'}
|
||
|
Which `k` singular values to find: either the largest magnitude ('LM')
|
||
|
or smallest magnitude ('SM') singular values.
|
||
|
v0 : ndarray, optional
|
||
|
The starting vector for iteration; see method-specific
|
||
|
documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>`,
|
||
|
:ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`), or
|
||
|
:ref:`'propack' <sparse.linalg.svds-propack>` for details.
|
||
|
maxiter : int, optional
|
||
|
Maximum number of iterations; see method-specific
|
||
|
documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>`,
|
||
|
:ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`), or
|
||
|
:ref:`'propack' <sparse.linalg.svds-propack>` for details.
|
||
|
return_singular_vectors : {True, False, "u", "vh"}
|
||
|
Singular values are always computed and returned; this parameter
|
||
|
controls the computation and return of singular vectors.
|
||
|
|
||
|
- ``True``: return singular vectors.
|
||
|
- ``False``: do not return singular vectors.
|
||
|
- ``"u"``: if ``M <= N``, compute only the left singular vectors and
|
||
|
return ``None`` for the right singular vectors. Otherwise, compute
|
||
|
all singular vectors.
|
||
|
- ``"vh"``: if ``M > N``, compute only the right singular vectors and
|
||
|
return ``None`` for the left singular vectors. Otherwise, compute
|
||
|
all singular vectors.
|
||
|
|
||
|
If ``solver='propack'``, the option is respected regardless of the
|
||
|
matrix shape.
|
||
|
|
||
|
solver : {'arpack', 'propack', 'lobpcg'}, optional
|
||
|
The solver used.
|
||
|
:ref:`'arpack' <sparse.linalg.svds-arpack>`,
|
||
|
:ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`, and
|
||
|
:ref:`'propack' <sparse.linalg.svds-propack>` are supported.
|
||
|
Default: `'arpack'`.
|
||
|
random_state : {None, int, `numpy.random.Generator`,
|
||
|
`numpy.random.RandomState`}, optional
|
||
|
|
||
|
Pseudorandom number generator state used to generate resamples.
|
||
|
|
||
|
If `random_state` is ``None`` (or `np.random`), the
|
||
|
`numpy.random.RandomState` singleton is used.
|
||
|
If `random_state` is an int, a new ``RandomState`` instance is used,
|
||
|
seeded with `random_state`.
|
||
|
If `random_state` is already a ``Generator`` or ``RandomState``
|
||
|
instance then that instance is used.
|
||
|
options : dict, optional
|
||
|
A dictionary of solver-specific options. No solver-specific options
|
||
|
are currently supported; this parameter is reserved for future use.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
u : ndarray, shape=(M, k)
|
||
|
Unitary matrix having left singular vectors as columns.
|
||
|
s : ndarray, shape=(k,)
|
||
|
The singular values.
|
||
|
vh : ndarray, shape=(k, N)
|
||
|
Unitary matrix having right singular vectors as rows.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a naive implementation using ARPACK or LOBPCG as an eigensolver
|
||
|
on the matrix ``A.conj().T @ A`` or ``A @ A.conj().T``, depending on
|
||
|
which one is smaller size, followed by the Rayleigh-Ritz method
|
||
|
as postprocessing; see
|
||
|
Using the normal matrix, in Rayleigh-Ritz method, (2022, Nov. 19),
|
||
|
Wikipedia, https://w.wiki/4zms.
|
||
|
|
||
|
Alternatively, the PROPACK solver can be called. ``form="array"``
|
||
|
|
||
|
Choices of the input matrix ``A`` numeric dtype may be limited.
|
||
|
Only ``solver="lobpcg"`` supports all floating point dtypes
|
||
|
real: 'np.single', 'np.double', 'np.longdouble' and
|
||
|
complex: 'np.csingle', 'np.cdouble', 'np.clongdouble'.
|
||
|
The ``solver="arpack"`` supports only
|
||
|
'np.single', 'np.double', and 'np.cdouble'.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Construct a matrix ``A`` from singular values and vectors.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.stats import ortho_group
|
||
|
>>> from scipy.sparse.linalg import svds
|
||
|
>>> from scipy.sparse import csr_matrix
|
||
|
>>> rng = np.random.default_rng()
|
||
|
|
||
|
Construct a dense matrix ``A`` from singular values and vectors.
|
||
|
|
||
|
>>> orthogonal = ortho_group.rvs(10, random_state=rng)
|
||
|
>>> s = [1e-3, 1, 2, 3, 4] # non-zero singular values
|
||
|
>>> u = orthogonal[:, :5] # left singular vectors
|
||
|
>>> vT = orthogonal[:, 5:].T # right singular vectors
|
||
|
>>> A = u @ np.diag(s) @ vT
|
||
|
|
||
|
With only four singular values/vectors, the SVD approximates the original
|
||
|
matrix.
|
||
|
|
||
|
>>> u4, s4, vT4 = svds(A, k=4)
|
||
|
>>> A4 = u4 @ np.diag(s4) @ vT4
|
||
|
>>> np.allclose(A4, A, atol=1e-3)
|
||
|
True
|
||
|
|
||
|
With all five non-zero singular values/vectors, we can reproduce
|
||
|
the original matrix more accurately.
|
||
|
|
||
|
>>> u5, s5, vT5 = svds(A, k=5)
|
||
|
>>> A5 = u5 @ np.diag(s5) @ vT5
|
||
|
>>> np.allclose(A5, A)
|
||
|
True
|
||
|
|
||
|
The singular values match the expected singular values.
|
||
|
|
||
|
>>> np.allclose(s5, s)
|
||
|
True
|
||
|
|
||
|
Since the singular values are not close to each other in this example,
|
||
|
every singular vector matches as expected up to a difference in sign.
|
||
|
|
||
|
>>> (np.allclose(np.abs(u5), np.abs(u)) and
|
||
|
... np.allclose(np.abs(vT5), np.abs(vT)))
|
||
|
True
|
||
|
|
||
|
The singular vectors are also orthogonal.
|
||
|
|
||
|
>>> (np.allclose(u5.T @ u5, np.eye(5)) and
|
||
|
... np.allclose(vT5 @ vT5.T, np.eye(5)))
|
||
|
True
|
||
|
|
||
|
If there are (nearly) multiple singular values, the corresponding
|
||
|
individual singular vectors may be unstable, but the whole invariant
|
||
|
subspace containing all such singular vectors is computed accurately
|
||
|
as can be measured by angles between subspaces via 'subspace_angles'.
|
||
|
|
||
|
>>> from scipy.linalg import subspace_angles as s_a
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> s = [1, 1 + 1e-6] # non-zero singular values
|
||
|
>>> u, _ = np.linalg.qr(rng.standard_normal((99, 2)))
|
||
|
>>> v, _ = np.linalg.qr(rng.standard_normal((99, 2)))
|
||
|
>>> vT = v.T
|
||
|
>>> A = u @ np.diag(s) @ vT
|
||
|
>>> A = A.astype(np.float32)
|
||
|
>>> u2, s2, vT2 = svds(A, k=2)
|
||
|
>>> np.allclose(s2, s)
|
||
|
True
|
||
|
|
||
|
The angles between the individual exact and computed singular vectors
|
||
|
are not so small.
|
||
|
|
||
|
>>> s_a(u2[:, :1], u[:, :1]) + s_a(u2[:, 1:], u[:, 1:]) > 1e-3
|
||
|
True
|
||
|
|
||
|
>>> (s_a(vT2[:1, :].T, vT[:1, :].T) +
|
||
|
... s_a(vT2[1:, :].T, vT[1:, :].T)) > 1e-3
|
||
|
True
|
||
|
|
||
|
As opposed to the angles between the 2-dimensional invariant subspaces
|
||
|
that these vectors span, which are small for rights singular vectors
|
||
|
|
||
|
>>> s_a(u2, u).sum() < 1e-6
|
||
|
True
|
||
|
|
||
|
as well as for left singular vectors.
|
||
|
|
||
|
>>> s_a(vT2.T, vT.T).sum() < 1e-6
|
||
|
True
|
||
|
|
||
|
The next example follows that of 'sklearn.decomposition.TruncatedSVD'.
|
||
|
|
||
|
>>> rng = np.random.RandomState(0)
|
||
|
>>> X_dense = rng.random(size=(100, 100))
|
||
|
>>> X_dense[:, 2 * np.arange(50)] = 0
|
||
|
>>> X = csr_matrix(X_dense)
|
||
|
>>> _, singular_values, _ = svds(X, k=5)
|
||
|
>>> print(singular_values)
|
||
|
[ 4.3293... 4.4491... 4.5420... 4.5987... 35.2410...]
|
||
|
|
||
|
The function can be called without the transpose of the input matrix
|
||
|
ever explicitly constructed.
|
||
|
|
||
|
>>> from scipy.linalg import svd
|
||
|
>>> from scipy.sparse import rand
|
||
|
>>> from scipy.sparse.linalg import aslinearoperator
|
||
|
>>> rng = np.random.RandomState(0)
|
||
|
>>> G = rand(8, 9, density=0.5, random_state=rng)
|
||
|
>>> Glo = aslinearoperator(G)
|
||
|
>>> _, singular_values_svds, _ = svds(Glo, k=5)
|
||
|
>>> _, singular_values_svd, _ = svd(G.toarray())
|
||
|
>>> np.allclose(singular_values_svds, singular_values_svd[-4::-1])
|
||
|
True
|
||
|
|
||
|
The most memory efficient scenario is where neither
|
||
|
the original matrix, nor its transpose, is explicitly constructed.
|
||
|
Our example computes the smallest singular values and vectors
|
||
|
of 'LinearOperator' constructed from the numpy function 'np.diff' used
|
||
|
column-wise to be consistent with 'LinearOperator' operating on columns.
|
||
|
|
||
|
>>> from scipy.sparse.linalg import LinearOperator, aslinearoperator
|
||
|
>>> diff0 = lambda a: np.diff(a, axis=0)
|
||
|
|
||
|
Let us create the matrix from 'diff0' to be used for validation only.
|
||
|
|
||
|
>>> n = 5 # The dimension of the space.
|
||
|
>>> M_from_diff0 = diff0(np.eye(n))
|
||
|
>>> print(M_from_diff0.astype(int))
|
||
|
[[-1 1 0 0 0]
|
||
|
[ 0 -1 1 0 0]
|
||
|
[ 0 0 -1 1 0]
|
||
|
[ 0 0 0 -1 1]]
|
||
|
|
||
|
The matrix 'M_from_diff0' is bi-diagonal and could be alternatively
|
||
|
created directly by
|
||
|
|
||
|
>>> M = - np.eye(n - 1, n, dtype=int)
|
||
|
>>> np.fill_diagonal(M[:,1:], 1)
|
||
|
>>> np.allclose(M, M_from_diff0)
|
||
|
True
|
||
|
|
||
|
Its transpose
|
||
|
|
||
|
>>> print(M.T)
|
||
|
[[-1 0 0 0]
|
||
|
[ 1 -1 0 0]
|
||
|
[ 0 1 -1 0]
|
||
|
[ 0 0 1 -1]
|
||
|
[ 0 0 0 1]]
|
||
|
|
||
|
can be viewed as the incidence matrix; see
|
||
|
Incidence matrix, (2022, Nov. 19), Wikipedia, https://w.wiki/5YXU,
|
||
|
of a linear graph with 5 vertices and 4 edges. The 5x5 normal matrix
|
||
|
'M.T @ M' thus is
|
||
|
|
||
|
>>> print(M.T @ M)
|
||
|
[[ 1 -1 0 0 0]
|
||
|
[-1 2 -1 0 0]
|
||
|
[ 0 -1 2 -1 0]
|
||
|
[ 0 0 -1 2 -1]
|
||
|
[ 0 0 0 -1 1]]
|
||
|
|
||
|
the graph Laplacian, while the actually used in 'svds' smaller size
|
||
|
4x4 normal matrix 'M @ M.T'
|
||
|
|
||
|
>>> print(M @ M.T)
|
||
|
[[ 2 -1 0 0]
|
||
|
[-1 2 -1 0]
|
||
|
[ 0 -1 2 -1]
|
||
|
[ 0 0 -1 2]]
|
||
|
|
||
|
is the so-called edge-based Laplacian; see
|
||
|
Symmetric Laplacian via the incidence matrix, in Laplacian matrix,
|
||
|
(2022, Nov. 19), Wikipedia, https://w.wiki/5YXW.
|
||
|
|
||
|
The 'LinearOperator' setup needs the options 'rmatvec' and 'rmatmat'
|
||
|
of multiplication by the matrix transpose 'M.T', but we want to be
|
||
|
matrix-free to save memory, so knowing how 'M.T' looks like, we
|
||
|
manually construct the following function to be used in 'rmatmat=diff0t'.
|
||
|
|
||
|
>>> def diff0t(a):
|
||
|
... if a.ndim == 1:
|
||
|
... a = a[:,np.newaxis] # Turn 1D into 2D array
|
||
|
... d = np.zeros((a.shape[0] + 1, a.shape[1]), dtype=a.dtype)
|
||
|
... d[0, :] = - a[0, :]
|
||
|
... d[1:-1, :] = a[0:-1, :] - a[1:, :]
|
||
|
... d[-1, :] = a[-1, :]
|
||
|
... return d
|
||
|
|
||
|
We check that our function 'diff0t' for the matrix transpose is valid.
|
||
|
|
||
|
>>> np.allclose(M.T, diff0t(np.eye(n-1)))
|
||
|
True
|
||
|
|
||
|
Now we setup our matrix-free 'LinearOperator' called 'diff0_func_aslo'
|
||
|
and for validation the matrix-based 'diff0_matrix_aslo'.
|
||
|
|
||
|
>>> def diff0_func_aslo_def(n):
|
||
|
... return LinearOperator(matvec=diff0,
|
||
|
... matmat=diff0,
|
||
|
... rmatvec=diff0t,
|
||
|
... rmatmat=diff0t,
|
||
|
... shape=(n - 1, n))
|
||
|
>>> diff0_func_aslo = diff0_func_aslo_def(n)
|
||
|
>>> diff0_matrix_aslo = aslinearoperator(M_from_diff0)
|
||
|
|
||
|
And validate both the matrix and its transpose in 'LinearOperator'.
|
||
|
|
||
|
>>> np.allclose(diff0_func_aslo(np.eye(n)),
|
||
|
... diff0_matrix_aslo(np.eye(n)))
|
||
|
True
|
||
|
>>> np.allclose(diff0_func_aslo.T(np.eye(n-1)),
|
||
|
... diff0_matrix_aslo.T(np.eye(n-1)))
|
||
|
True
|
||
|
|
||
|
Having the 'LinearOperator' setup validated, we run the solver.
|
||
|
|
||
|
>>> n = 100
|
||
|
>>> diff0_func_aslo = diff0_func_aslo_def(n)
|
||
|
>>> u, s, vT = svds(diff0_func_aslo, k=3, which='SM')
|
||
|
|
||
|
The singular values squared and the singular vectors are known
|
||
|
explicitly; see
|
||
|
Pure Dirichlet boundary conditions, in
|
||
|
Eigenvalues and eigenvectors of the second derivative,
|
||
|
(2022, Nov. 19), Wikipedia, https://w.wiki/5YX6,
|
||
|
since 'diff' corresponds to first
|
||
|
derivative, and its smaller size n-1 x n-1 normal matrix
|
||
|
'M @ M.T' represent the discrete second derivative with the Dirichlet
|
||
|
boundary conditions. We use these analytic expressions for validation.
|
||
|
|
||
|
>>> se = 2. * np.sin(np.pi * np.arange(1, 4) / (2. * n))
|
||
|
>>> ue = np.sqrt(2 / n) * np.sin(np.pi * np.outer(np.arange(1, n),
|
||
|
... np.arange(1, 4)) / n)
|
||
|
>>> np.allclose(s, se, atol=1e-3)
|
||
|
True
|
||
|
>>> print(np.allclose(np.abs(u), np.abs(ue), atol=1e-6))
|
||
|
True
|
||
|
"""
|
||
|
args = _iv(A, k, ncv, tol, which, v0, maxiter, return_singular_vectors,
|
||
|
solver, random_state)
|
||
|
(A, k, ncv, tol, which, v0, maxiter,
|
||
|
return_singular_vectors, solver, random_state) = args
|
||
|
|
||
|
largest = (which == 'LM')
|
||
|
n, m = A.shape
|
||
|
|
||
|
if n >= m:
|
||
|
X_dot = A.matvec
|
||
|
X_matmat = A.matmat
|
||
|
XH_dot = A.rmatvec
|
||
|
XH_mat = A.rmatmat
|
||
|
transpose = False
|
||
|
else:
|
||
|
X_dot = A.rmatvec
|
||
|
X_matmat = A.rmatmat
|
||
|
XH_dot = A.matvec
|
||
|
XH_mat = A.matmat
|
||
|
transpose = True
|
||
|
|
||
|
dtype = getattr(A, 'dtype', None)
|
||
|
if dtype is None:
|
||
|
dtype = A.dot(np.zeros([m, 1])).dtype
|
||
|
|
||
|
def matvec_XH_X(x):
|
||
|
return XH_dot(X_dot(x))
|
||
|
|
||
|
def matmat_XH_X(x):
|
||
|
return XH_mat(X_matmat(x))
|
||
|
|
||
|
XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype,
|
||
|
matmat=matmat_XH_X,
|
||
|
shape=(min(A.shape), min(A.shape)))
|
||
|
|
||
|
# Get a low rank approximation of the implicitly defined gramian matrix.
|
||
|
# This is not a stable way to approach the problem.
|
||
|
if solver == 'lobpcg':
|
||
|
|
||
|
if k == 1 and v0 is not None:
|
||
|
X = np.reshape(v0, (-1, 1))
|
||
|
else:
|
||
|
X = random_state.standard_normal(size=(min(A.shape), k))
|
||
|
|
||
|
_, eigvec = lobpcg(XH_X, X, tol=tol ** 2, maxiter=maxiter,
|
||
|
largest=largest)
|
||
|
# lobpcg does not guarantee exactly orthonormal eigenvectors
|
||
|
# until after gh-16320 is merged
|
||
|
eigvec, _ = np.linalg.qr(eigvec)
|
||
|
|
||
|
elif solver == 'propack':
|
||
|
if not HAS_PROPACK:
|
||
|
raise ValueError("`solver='propack'` is opt-in due "
|
||
|
"to potential issues on Windows, "
|
||
|
"it can be enabled by setting the "
|
||
|
"`SCIPY_USE_PROPACK` environment "
|
||
|
"variable before importing scipy")
|
||
|
jobu = return_singular_vectors in {True, 'u'}
|
||
|
jobv = return_singular_vectors in {True, 'vh'}
|
||
|
irl_mode = (which == 'SM')
|
||
|
res = _svdp(A, k=k, tol=tol**2, which=which, maxiter=None,
|
||
|
compute_u=jobu, compute_v=jobv, irl_mode=irl_mode,
|
||
|
kmax=maxiter, v0=v0, random_state=random_state)
|
||
|
|
||
|
u, s, vh, _ = res # but we'll ignore bnd, the last output
|
||
|
|
||
|
# PROPACK order appears to be largest first. `svds` output order is not
|
||
|
# guaranteed, according to documentation, but for ARPACK and LOBPCG
|
||
|
# they actually are ordered smallest to largest, so reverse for
|
||
|
# consistency.
|
||
|
s = s[::-1]
|
||
|
u = u[:, ::-1]
|
||
|
vh = vh[::-1]
|
||
|
|
||
|
u = u if jobu else None
|
||
|
vh = vh if jobv else None
|
||
|
|
||
|
if return_singular_vectors:
|
||
|
return u, s, vh
|
||
|
else:
|
||
|
return s
|
||
|
|
||
|
elif solver == 'arpack' or solver is None:
|
||
|
if v0 is None:
|
||
|
v0 = random_state.standard_normal(size=(min(A.shape),))
|
||
|
_, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter,
|
||
|
ncv=ncv, which=which, v0=v0)
|
||
|
# arpack do not guarantee exactly orthonormal eigenvectors
|
||
|
# for clustered eigenvalues, especially in complex arithmetic
|
||
|
eigvec, _ = np.linalg.qr(eigvec)
|
||
|
|
||
|
# the eigenvectors eigvec must be orthonomal here; see gh-16712
|
||
|
Av = X_matmat(eigvec)
|
||
|
if not return_singular_vectors:
|
||
|
s = svd(Av, compute_uv=False, overwrite_a=True)
|
||
|
return s[::-1]
|
||
|
|
||
|
# compute the left singular vectors of X and update the right ones
|
||
|
# accordingly
|
||
|
u, s, vh = svd(Av, full_matrices=False, overwrite_a=True)
|
||
|
u = u[:, ::-1]
|
||
|
s = s[::-1]
|
||
|
vh = vh[::-1]
|
||
|
|
||
|
jobu = return_singular_vectors in {True, 'u'}
|
||
|
jobv = return_singular_vectors in {True, 'vh'}
|
||
|
|
||
|
if transpose:
|
||
|
u_tmp = eigvec @ _herm(vh) if jobu else None
|
||
|
vh = _herm(u) if jobv else None
|
||
|
u = u_tmp
|
||
|
else:
|
||
|
if not jobu:
|
||
|
u = None
|
||
|
vh = vh @ _herm(eigvec) if jobv else None
|
||
|
|
||
|
return u, s, vh
|