270 lines
7.0 KiB
Python
270 lines
7.0 KiB
Python
|
import numpy as np
|
||
|
from scipy._lib.decorator import decorator as _decorator
|
||
|
|
||
|
__all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d']
|
||
|
|
||
|
|
||
|
@_decorator
|
||
|
def _held_figure(func, obj, ax=None, **kw):
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
if ax is None:
|
||
|
fig = plt.figure()
|
||
|
ax = fig.gca()
|
||
|
return func(obj, ax=ax, **kw)
|
||
|
|
||
|
# As of matplotlib 2.0, the "hold" mechanism is deprecated.
|
||
|
# When matplotlib 1.x is no longer supported, this check can be removed.
|
||
|
was_held = getattr(ax, 'ishold', lambda: True)()
|
||
|
if was_held:
|
||
|
return func(obj, ax=ax, **kw)
|
||
|
try:
|
||
|
ax.hold(True)
|
||
|
return func(obj, ax=ax, **kw)
|
||
|
finally:
|
||
|
ax.hold(was_held)
|
||
|
|
||
|
|
||
|
def _adjust_bounds(ax, points):
|
||
|
margin = 0.1 * points.ptp(axis=0)
|
||
|
xy_min = points.min(axis=0) - margin
|
||
|
xy_max = points.max(axis=0) + margin
|
||
|
ax.set_xlim(xy_min[0], xy_max[0])
|
||
|
ax.set_ylim(xy_min[1], xy_max[1])
|
||
|
|
||
|
|
||
|
@_held_figure
|
||
|
def delaunay_plot_2d(tri, ax=None):
|
||
|
"""
|
||
|
Plot the given Delaunay triangulation in 2-D
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tri : scipy.spatial.Delaunay instance
|
||
|
Triangulation to plot
|
||
|
ax : matplotlib.axes.Axes instance, optional
|
||
|
Axes to plot on
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fig : matplotlib.figure.Figure instance
|
||
|
Figure for the plot
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Delaunay
|
||
|
matplotlib.pyplot.triplot
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Requires Matplotlib.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.spatial import Delaunay, delaunay_plot_2d
|
||
|
|
||
|
The Delaunay triangulation of a set of random points:
|
||
|
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> points = rng.random((30, 2))
|
||
|
>>> tri = Delaunay(points)
|
||
|
|
||
|
Plot it:
|
||
|
|
||
|
>>> _ = delaunay_plot_2d(tri)
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
if tri.points.shape[1] != 2:
|
||
|
raise ValueError("Delaunay triangulation is not 2-D")
|
||
|
|
||
|
x, y = tri.points.T
|
||
|
ax.plot(x, y, 'o')
|
||
|
ax.triplot(x, y, tri.simplices.copy())
|
||
|
|
||
|
_adjust_bounds(ax, tri.points)
|
||
|
|
||
|
return ax.figure
|
||
|
|
||
|
|
||
|
@_held_figure
|
||
|
def convex_hull_plot_2d(hull, ax=None):
|
||
|
"""
|
||
|
Plot the given convex hull diagram in 2-D
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
hull : scipy.spatial.ConvexHull instance
|
||
|
Convex hull to plot
|
||
|
ax : matplotlib.axes.Axes instance, optional
|
||
|
Axes to plot on
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fig : matplotlib.figure.Figure instance
|
||
|
Figure for the plot
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ConvexHull
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Requires Matplotlib.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d
|
||
|
|
||
|
The convex hull of a random set of points:
|
||
|
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> points = rng.random((30, 2))
|
||
|
>>> hull = ConvexHull(points)
|
||
|
|
||
|
Plot it:
|
||
|
|
||
|
>>> _ = convex_hull_plot_2d(hull)
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
from matplotlib.collections import LineCollection
|
||
|
|
||
|
if hull.points.shape[1] != 2:
|
||
|
raise ValueError("Convex hull is not 2-D")
|
||
|
|
||
|
ax.plot(hull.points[:, 0], hull.points[:, 1], 'o')
|
||
|
line_segments = [hull.points[simplex] for simplex in hull.simplices]
|
||
|
ax.add_collection(LineCollection(line_segments,
|
||
|
colors='k',
|
||
|
linestyle='solid'))
|
||
|
_adjust_bounds(ax, hull.points)
|
||
|
|
||
|
return ax.figure
|
||
|
|
||
|
|
||
|
@_held_figure
|
||
|
def voronoi_plot_2d(vor, ax=None, **kw):
|
||
|
"""
|
||
|
Plot the given Voronoi diagram in 2-D
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vor : scipy.spatial.Voronoi instance
|
||
|
Diagram to plot
|
||
|
ax : matplotlib.axes.Axes instance, optional
|
||
|
Axes to plot on
|
||
|
show_points : bool, optional
|
||
|
Add the Voronoi points to the plot.
|
||
|
show_vertices : bool, optional
|
||
|
Add the Voronoi vertices to the plot.
|
||
|
line_colors : string, optional
|
||
|
Specifies the line color for polygon boundaries
|
||
|
line_width : float, optional
|
||
|
Specifies the line width for polygon boundaries
|
||
|
line_alpha : float, optional
|
||
|
Specifies the line alpha for polygon boundaries
|
||
|
point_size : float, optional
|
||
|
Specifies the size of points
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fig : matplotlib.figure.Figure instance
|
||
|
Figure for the plot
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Voronoi
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Requires Matplotlib.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
|
||
|
|
||
|
Create a set of points for the example:
|
||
|
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> points = rng.random((10,2))
|
||
|
|
||
|
Generate the Voronoi diagram for the points:
|
||
|
|
||
|
>>> vor = Voronoi(points)
|
||
|
|
||
|
Use `voronoi_plot_2d` to plot the diagram:
|
||
|
|
||
|
>>> fig = voronoi_plot_2d(vor)
|
||
|
|
||
|
Use `voronoi_plot_2d` to plot the diagram again, with some settings
|
||
|
customized:
|
||
|
|
||
|
>>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange',
|
||
|
... line_width=2, line_alpha=0.6, point_size=2)
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
from matplotlib.collections import LineCollection
|
||
|
|
||
|
if vor.points.shape[1] != 2:
|
||
|
raise ValueError("Voronoi diagram is not 2-D")
|
||
|
|
||
|
if kw.get('show_points', True):
|
||
|
point_size = kw.get('point_size', None)
|
||
|
ax.plot(vor.points[:, 0], vor.points[:, 1], '.', markersize=point_size)
|
||
|
if kw.get('show_vertices', True):
|
||
|
ax.plot(vor.vertices[:, 0], vor.vertices[:, 1], 'o')
|
||
|
|
||
|
line_colors = kw.get('line_colors', 'k')
|
||
|
line_width = kw.get('line_width', 1.0)
|
||
|
line_alpha = kw.get('line_alpha', 1.0)
|
||
|
|
||
|
center = vor.points.mean(axis=0)
|
||
|
ptp_bound = vor.points.ptp(axis=0)
|
||
|
|
||
|
finite_segments = []
|
||
|
infinite_segments = []
|
||
|
for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
|
||
|
simplex = np.asarray(simplex)
|
||
|
if np.all(simplex >= 0):
|
||
|
finite_segments.append(vor.vertices[simplex])
|
||
|
else:
|
||
|
i = simplex[simplex >= 0][0] # finite end Voronoi vertex
|
||
|
|
||
|
t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent
|
||
|
t /= np.linalg.norm(t)
|
||
|
n = np.array([-t[1], t[0]]) # normal
|
||
|
|
||
|
midpoint = vor.points[pointidx].mean(axis=0)
|
||
|
direction = np.sign(np.dot(midpoint - center, n)) * n
|
||
|
if (vor.furthest_site):
|
||
|
direction = -direction
|
||
|
far_point = vor.vertices[i] + direction * ptp_bound.max()
|
||
|
|
||
|
infinite_segments.append([vor.vertices[i], far_point])
|
||
|
|
||
|
ax.add_collection(LineCollection(finite_segments,
|
||
|
colors=line_colors,
|
||
|
lw=line_width,
|
||
|
alpha=line_alpha,
|
||
|
linestyle='solid'))
|
||
|
ax.add_collection(LineCollection(infinite_segments,
|
||
|
colors=line_colors,
|
||
|
lw=line_width,
|
||
|
alpha=line_alpha,
|
||
|
linestyle='dashed'))
|
||
|
|
||
|
_adjust_bounds(ax, vor.points)
|
||
|
|
||
|
return ax.figure
|