513 lines
17 KiB
Python
513 lines
17 KiB
Python
|
"""
|
||
|
Test the fastica algorithm.
|
||
|
"""
|
||
|
import itertools
|
||
|
import pytest
|
||
|
import warnings
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import stats
|
||
|
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
|
||
|
from sklearn.decomposition import FastICA, fastica, PCA
|
||
|
from sklearn.decomposition._fastica import _gs_decorrelation
|
||
|
from sklearn.exceptions import ConvergenceWarning
|
||
|
|
||
|
|
||
|
def center_and_norm(x, axis=-1):
|
||
|
"""Centers and norms x **in place**
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
x: ndarray
|
||
|
Array with an axis of observations (statistical units) measured on
|
||
|
random variables.
|
||
|
axis: int, optional
|
||
|
Axis along which the mean and variance are calculated.
|
||
|
"""
|
||
|
x = np.rollaxis(x, axis)
|
||
|
x -= x.mean(axis=0)
|
||
|
x /= x.std(axis=0)
|
||
|
|
||
|
|
||
|
def test_gs():
|
||
|
# Test gram schmidt orthonormalization
|
||
|
# generate a random orthogonal matrix
|
||
|
rng = np.random.RandomState(0)
|
||
|
W, _, _ = np.linalg.svd(rng.randn(10, 10))
|
||
|
w = rng.randn(10)
|
||
|
_gs_decorrelation(w, W, 10)
|
||
|
assert (w**2).sum() < 1.0e-10
|
||
|
w = rng.randn(10)
|
||
|
u = _gs_decorrelation(w, W, 5)
|
||
|
tmp = np.dot(u, W.T)
|
||
|
assert (tmp[:5] ** 2).sum() < 1.0e-10
|
||
|
|
||
|
|
||
|
def test_fastica_attributes_dtypes(global_dtype):
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
|
||
|
fica = FastICA(
|
||
|
n_components=5, max_iter=1000, whiten="unit-variance", random_state=0
|
||
|
).fit(X)
|
||
|
assert fica.components_.dtype == global_dtype
|
||
|
assert fica.mixing_.dtype == global_dtype
|
||
|
assert fica.mean_.dtype == global_dtype
|
||
|
assert fica.whitening_.dtype == global_dtype
|
||
|
|
||
|
|
||
|
def test_fastica_return_dtypes(global_dtype):
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
|
||
|
k_, mixing_, s_ = fastica(
|
||
|
X, max_iter=1000, whiten="unit-variance", random_state=rng
|
||
|
)
|
||
|
assert k_.dtype == global_dtype
|
||
|
assert mixing_.dtype == global_dtype
|
||
|
assert s_.dtype == global_dtype
|
||
|
|
||
|
|
||
|
# FIXME remove filter in 1.3
|
||
|
@pytest.mark.filterwarnings(
|
||
|
"ignore:Starting in v1.3, whiten='unit-variance' will be used by default."
|
||
|
)
|
||
|
@pytest.mark.parametrize("add_noise", [True, False])
|
||
|
def test_fastica_simple(add_noise, global_random_seed, global_dtype):
|
||
|
if (
|
||
|
global_random_seed == 20
|
||
|
and global_dtype == np.float32
|
||
|
and not add_noise
|
||
|
and os.getenv("DISTRIB") == "ubuntu"
|
||
|
):
|
||
|
pytest.xfail(
|
||
|
"FastICA instability with Ubuntu Atlas build with float32 "
|
||
|
"global_dtype. For more details, see "
|
||
|
"https://github.com/scikit-learn/scikit-learn/issues/24131#issuecomment-1208091119" # noqa
|
||
|
)
|
||
|
|
||
|
# Test the FastICA algorithm on very simple data.
|
||
|
rng = np.random.RandomState(global_random_seed)
|
||
|
n_samples = 1000
|
||
|
# Generate two sources:
|
||
|
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
|
||
|
s2 = stats.t.rvs(1, size=n_samples, random_state=global_random_seed)
|
||
|
s = np.c_[s1, s2].T
|
||
|
center_and_norm(s)
|
||
|
s = s.astype(global_dtype)
|
||
|
s1, s2 = s
|
||
|
|
||
|
# Mixing angle
|
||
|
phi = 0.6
|
||
|
mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]])
|
||
|
mixing = mixing.astype(global_dtype)
|
||
|
m = np.dot(mixing, s)
|
||
|
|
||
|
if add_noise:
|
||
|
m += 0.1 * rng.randn(2, 1000)
|
||
|
|
||
|
center_and_norm(m)
|
||
|
|
||
|
# function as fun arg
|
||
|
def g_test(x):
|
||
|
return x**3, (3 * x**2).mean(axis=-1)
|
||
|
|
||
|
algos = ["parallel", "deflation"]
|
||
|
nls = ["logcosh", "exp", "cube", g_test]
|
||
|
whitening = ["arbitrary-variance", "unit-variance", False]
|
||
|
for algo, nl, whiten in itertools.product(algos, nls, whitening):
|
||
|
if whiten:
|
||
|
k_, mixing_, s_ = fastica(
|
||
|
m.T, fun=nl, whiten=whiten, algorithm=algo, random_state=rng
|
||
|
)
|
||
|
with pytest.raises(ValueError):
|
||
|
fastica(m.T, fun=np.tanh, whiten=whiten, algorithm=algo)
|
||
|
else:
|
||
|
pca = PCA(n_components=2, whiten=True, random_state=rng)
|
||
|
X = pca.fit_transform(m.T)
|
||
|
k_, mixing_, s_ = fastica(
|
||
|
X, fun=nl, algorithm=algo, whiten=False, random_state=rng
|
||
|
)
|
||
|
with pytest.raises(ValueError):
|
||
|
fastica(X, fun=np.tanh, algorithm=algo)
|
||
|
s_ = s_.T
|
||
|
# Check that the mixing model described in the docstring holds:
|
||
|
if whiten:
|
||
|
# XXX: exact reconstruction to standard relative tolerance is not
|
||
|
# possible. This is probably expected when add_noise is True but we
|
||
|
# also need a non-trivial atol in float32 when add_noise is False.
|
||
|
#
|
||
|
# Note that the 2 sources are non-Gaussian in this test.
|
||
|
atol = 1e-5 if global_dtype == np.float32 else 0
|
||
|
assert_allclose(np.dot(np.dot(mixing_, k_), m), s_, atol=atol)
|
||
|
|
||
|
center_and_norm(s_)
|
||
|
s1_, s2_ = s_
|
||
|
# Check to see if the sources have been estimated
|
||
|
# in the wrong order
|
||
|
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
||
|
s2_, s1_ = s_
|
||
|
s1_ *= np.sign(np.dot(s1_, s1))
|
||
|
s2_ *= np.sign(np.dot(s2_, s2))
|
||
|
|
||
|
# Check that we have estimated the original sources
|
||
|
if not add_noise:
|
||
|
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-2)
|
||
|
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-2)
|
||
|
else:
|
||
|
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-1)
|
||
|
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-1)
|
||
|
|
||
|
# Test FastICA class
|
||
|
_, _, sources_fun = fastica(
|
||
|
m.T, fun=nl, algorithm=algo, random_state=global_random_seed
|
||
|
)
|
||
|
ica = FastICA(fun=nl, algorithm=algo, random_state=global_random_seed)
|
||
|
sources = ica.fit_transform(m.T)
|
||
|
assert ica.components_.shape == (2, 2)
|
||
|
assert sources.shape == (1000, 2)
|
||
|
|
||
|
assert_allclose(sources_fun, sources)
|
||
|
# the debian 32 bit build with global dtype float32 needs an atol to pass
|
||
|
atol = 1e-7 if global_dtype == np.float32 else 0
|
||
|
assert_allclose(sources, ica.transform(m.T), atol=atol)
|
||
|
|
||
|
assert ica.mixing_.shape == (2, 2)
|
||
|
|
||
|
ica = FastICA(fun=np.tanh, algorithm=algo)
|
||
|
with pytest.raises(ValueError):
|
||
|
ica.fit(m.T)
|
||
|
|
||
|
|
||
|
def test_fastica_nowhiten():
|
||
|
m = [[0, 1], [1, 0]]
|
||
|
|
||
|
# test for issue #697
|
||
|
ica = FastICA(n_components=1, whiten=False, random_state=0)
|
||
|
warn_msg = "Ignoring n_components with whiten=False."
|
||
|
with pytest.warns(UserWarning, match=warn_msg):
|
||
|
ica.fit(m)
|
||
|
assert hasattr(ica, "mixing_")
|
||
|
|
||
|
|
||
|
def test_fastica_convergence_fail():
|
||
|
# Test the FastICA algorithm on very simple data
|
||
|
# (see test_non_square_fastica).
|
||
|
# Ensure a ConvergenceWarning raised if the tolerance is sufficiently low.
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
n_samples = 1000
|
||
|
# Generate two sources:
|
||
|
t = np.linspace(0, 100, n_samples)
|
||
|
s1 = np.sin(t)
|
||
|
s2 = np.ceil(np.sin(np.pi * t))
|
||
|
s = np.c_[s1, s2].T
|
||
|
center_and_norm(s)
|
||
|
|
||
|
# Mixing matrix
|
||
|
mixing = rng.randn(6, 2)
|
||
|
m = np.dot(mixing, s)
|
||
|
|
||
|
# Do fastICA with tolerance 0. to ensure failing convergence
|
||
|
warn_msg = (
|
||
|
"FastICA did not converge. Consider increasing tolerance "
|
||
|
"or the maximum number of iterations."
|
||
|
)
|
||
|
with pytest.warns(ConvergenceWarning, match=warn_msg):
|
||
|
ica = FastICA(
|
||
|
algorithm="parallel", n_components=2, random_state=rng, max_iter=2, tol=0.0
|
||
|
)
|
||
|
ica.fit(m.T)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("add_noise", [True, False])
|
||
|
def test_non_square_fastica(add_noise):
|
||
|
# Test the FastICA algorithm on very simple data.
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
n_samples = 1000
|
||
|
# Generate two sources:
|
||
|
t = np.linspace(0, 100, n_samples)
|
||
|
s1 = np.sin(t)
|
||
|
s2 = np.ceil(np.sin(np.pi * t))
|
||
|
s = np.c_[s1, s2].T
|
||
|
center_and_norm(s)
|
||
|
s1, s2 = s
|
||
|
|
||
|
# Mixing matrix
|
||
|
mixing = rng.randn(6, 2)
|
||
|
m = np.dot(mixing, s)
|
||
|
|
||
|
if add_noise:
|
||
|
m += 0.1 * rng.randn(6, n_samples)
|
||
|
|
||
|
center_and_norm(m)
|
||
|
|
||
|
k_, mixing_, s_ = fastica(
|
||
|
m.T, n_components=2, whiten="unit-variance", random_state=rng
|
||
|
)
|
||
|
s_ = s_.T
|
||
|
|
||
|
# Check that the mixing model described in the docstring holds:
|
||
|
assert_allclose(s_, np.dot(np.dot(mixing_, k_), m))
|
||
|
|
||
|
center_and_norm(s_)
|
||
|
s1_, s2_ = s_
|
||
|
# Check to see if the sources have been estimated
|
||
|
# in the wrong order
|
||
|
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
||
|
s2_, s1_ = s_
|
||
|
s1_ *= np.sign(np.dot(s1_, s1))
|
||
|
s2_ *= np.sign(np.dot(s2_, s2))
|
||
|
|
||
|
# Check that we have estimated the original sources
|
||
|
if not add_noise:
|
||
|
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-3)
|
||
|
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-3)
|
||
|
|
||
|
|
||
|
def test_fit_transform(global_random_seed, global_dtype):
|
||
|
"""Test unit variance of transformed data using FastICA algorithm.
|
||
|
|
||
|
Check that `fit_transform` gives the same result as applying
|
||
|
`fit` and then `transform`.
|
||
|
|
||
|
Bug #13056
|
||
|
"""
|
||
|
# multivariate uniform data in [0, 1]
|
||
|
rng = np.random.RandomState(global_random_seed)
|
||
|
X = rng.random_sample((100, 10)).astype(global_dtype)
|
||
|
max_iter = 300
|
||
|
for whiten, n_components in [["unit-variance", 5], [False, None]]:
|
||
|
n_components_ = n_components if n_components is not None else X.shape[1]
|
||
|
|
||
|
ica = FastICA(
|
||
|
n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0
|
||
|
)
|
||
|
with warnings.catch_warnings():
|
||
|
# make sure that numerical errors do not cause sqrt of negative
|
||
|
# values
|
||
|
warnings.simplefilter("error", RuntimeWarning)
|
||
|
# XXX: for some seeds, the model does not converge.
|
||
|
# However this is not what we test here.
|
||
|
warnings.simplefilter("ignore", ConvergenceWarning)
|
||
|
Xt = ica.fit_transform(X)
|
||
|
assert ica.components_.shape == (n_components_, 10)
|
||
|
assert Xt.shape == (X.shape[0], n_components_)
|
||
|
|
||
|
ica2 = FastICA(
|
||
|
n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0
|
||
|
)
|
||
|
with warnings.catch_warnings():
|
||
|
# make sure that numerical errors do not cause sqrt of negative
|
||
|
# values
|
||
|
warnings.simplefilter("error", RuntimeWarning)
|
||
|
warnings.simplefilter("ignore", ConvergenceWarning)
|
||
|
ica2.fit(X)
|
||
|
assert ica2.components_.shape == (n_components_, 10)
|
||
|
Xt2 = ica2.transform(X)
|
||
|
|
||
|
# XXX: we have to set atol for this test to pass for all seeds when
|
||
|
# fitting with float32 data. Is this revealing a bug?
|
||
|
if global_dtype:
|
||
|
atol = np.abs(Xt2).mean() / 1e6
|
||
|
else:
|
||
|
atol = 0.0 # the default rtol is enough for float64 data
|
||
|
assert_allclose(Xt, Xt2, atol=atol)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:Ignoring n_components with whiten=False.")
|
||
|
@pytest.mark.parametrize(
|
||
|
"whiten, n_components, expected_mixing_shape",
|
||
|
[
|
||
|
("arbitrary-variance", 5, (10, 5)),
|
||
|
("arbitrary-variance", 10, (10, 10)),
|
||
|
("unit-variance", 5, (10, 5)),
|
||
|
("unit-variance", 10, (10, 10)),
|
||
|
(False, 5, (10, 10)),
|
||
|
(False, 10, (10, 10)),
|
||
|
],
|
||
|
)
|
||
|
def test_inverse_transform(
|
||
|
whiten, n_components, expected_mixing_shape, global_random_seed, global_dtype
|
||
|
):
|
||
|
# Test FastICA.inverse_transform
|
||
|
n_samples = 100
|
||
|
rng = np.random.RandomState(global_random_seed)
|
||
|
X = rng.random_sample((n_samples, 10)).astype(global_dtype)
|
||
|
|
||
|
ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten)
|
||
|
with warnings.catch_warnings():
|
||
|
# For some dataset (depending on the value of global_dtype) the model
|
||
|
# can fail to converge but this should not impact the definition of
|
||
|
# a valid inverse transform.
|
||
|
warnings.simplefilter("ignore", ConvergenceWarning)
|
||
|
Xt = ica.fit_transform(X)
|
||
|
assert ica.mixing_.shape == expected_mixing_shape
|
||
|
X2 = ica.inverse_transform(Xt)
|
||
|
assert X.shape == X2.shape
|
||
|
|
||
|
# reversibility test in non-reduction case
|
||
|
if n_components == X.shape[1]:
|
||
|
# XXX: we have to set atol for this test to pass for all seeds when
|
||
|
# fitting with float32 data. Is this revealing a bug?
|
||
|
if global_dtype:
|
||
|
# XXX: dividing by a smaller number makes
|
||
|
# tests fail for some seeds.
|
||
|
atol = np.abs(X2).mean() / 1e5
|
||
|
else:
|
||
|
atol = 0.0 # the default rtol is enough for float64 data
|
||
|
assert_allclose(X, X2, atol=atol)
|
||
|
|
||
|
|
||
|
# FIXME remove filter in 1.3
|
||
|
@pytest.mark.filterwarnings(
|
||
|
"ignore:Starting in v1.3, whiten='unit-variance' will be used by default."
|
||
|
)
|
||
|
def test_fastica_errors():
|
||
|
n_features = 3
|
||
|
n_samples = 10
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((n_samples, n_features))
|
||
|
w_init = rng.randn(n_features + 1, n_features + 1)
|
||
|
with pytest.raises(ValueError, match=r"alpha must be in \[1,2\]"):
|
||
|
fastica(X, fun_args={"alpha": 0})
|
||
|
with pytest.raises(
|
||
|
ValueError, match="w_init has invalid shape.+" r"should be \(3L?, 3L?\)"
|
||
|
):
|
||
|
fastica(X, w_init=w_init)
|
||
|
|
||
|
|
||
|
def test_fastica_whiten_unit_variance():
|
||
|
"""Test unit variance of transformed data using FastICA algorithm.
|
||
|
|
||
|
Bug #13056
|
||
|
"""
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((100, 10))
|
||
|
n_components = X.shape[1]
|
||
|
ica = FastICA(n_components=n_components, whiten="unit-variance", random_state=0)
|
||
|
Xt = ica.fit_transform(X)
|
||
|
|
||
|
assert np.var(Xt) == pytest.approx(1.0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("ica", [FastICA(), FastICA(whiten=True)])
|
||
|
def test_fastica_whiten_default_value_deprecation(ica):
|
||
|
"""Test FastICA whiten default value deprecation.
|
||
|
|
||
|
Regression test for #19490
|
||
|
"""
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((100, 10))
|
||
|
with pytest.warns(FutureWarning, match=r"Starting in v1.3, whiten="):
|
||
|
ica.fit(X)
|
||
|
assert ica._whiten == "arbitrary-variance"
|
||
|
|
||
|
|
||
|
def test_fastica_whiten_backwards_compatibility():
|
||
|
"""Test previous behavior for FastICA whitening (whiten=True)
|
||
|
|
||
|
Regression test for #19490
|
||
|
"""
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((100, 10))
|
||
|
n_components = X.shape[1]
|
||
|
|
||
|
default_ica = FastICA(n_components=n_components, random_state=0)
|
||
|
with pytest.warns(FutureWarning):
|
||
|
Xt_on_default = default_ica.fit_transform(X)
|
||
|
|
||
|
ica = FastICA(n_components=n_components, whiten=True, random_state=0)
|
||
|
with pytest.warns(FutureWarning):
|
||
|
Xt = ica.fit_transform(X)
|
||
|
|
||
|
# No warning must be raised in this case.
|
||
|
av_ica = FastICA(
|
||
|
n_components=n_components,
|
||
|
whiten="arbitrary-variance",
|
||
|
random_state=0,
|
||
|
whiten_solver="svd",
|
||
|
)
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("error", FutureWarning)
|
||
|
Xt_av = av_ica.fit_transform(X)
|
||
|
|
||
|
# The whitening strategy must be "arbitrary-variance" in all the cases.
|
||
|
assert default_ica._whiten == "arbitrary-variance"
|
||
|
assert ica._whiten == "arbitrary-variance"
|
||
|
assert av_ica._whiten == "arbitrary-variance"
|
||
|
|
||
|
assert_array_equal(Xt, Xt_on_default)
|
||
|
assert_array_equal(Xt, Xt_av)
|
||
|
|
||
|
assert np.var(Xt) == pytest.approx(1.0 / 100)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("whiten", ["arbitrary-variance", "unit-variance", False])
|
||
|
@pytest.mark.parametrize("return_X_mean", [True, False])
|
||
|
@pytest.mark.parametrize("return_n_iter", [True, False])
|
||
|
def test_fastica_output_shape(whiten, return_X_mean, return_n_iter):
|
||
|
n_features = 3
|
||
|
n_samples = 10
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((n_samples, n_features))
|
||
|
|
||
|
expected_len = 3 + return_X_mean + return_n_iter
|
||
|
|
||
|
out = fastica(
|
||
|
X, whiten=whiten, return_n_iter=return_n_iter, return_X_mean=return_X_mean
|
||
|
)
|
||
|
|
||
|
assert len(out) == expected_len
|
||
|
if not whiten:
|
||
|
assert out[0] is None
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("add_noise", [True, False])
|
||
|
def test_fastica_simple_different_solvers(add_noise, global_random_seed):
|
||
|
"""Test FastICA is consistent between whiten_solvers."""
|
||
|
rng = np.random.RandomState(global_random_seed)
|
||
|
n_samples = 1000
|
||
|
# Generate two sources:
|
||
|
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
|
||
|
s2 = stats.t.rvs(1, size=n_samples, random_state=rng)
|
||
|
s = np.c_[s1, s2].T
|
||
|
center_and_norm(s)
|
||
|
s1, s2 = s
|
||
|
|
||
|
# Mixing angle
|
||
|
phi = rng.rand() * 2 * np.pi
|
||
|
mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]])
|
||
|
m = np.dot(mixing, s)
|
||
|
|
||
|
if add_noise:
|
||
|
m += 0.1 * rng.randn(2, 1000)
|
||
|
|
||
|
center_and_norm(m)
|
||
|
|
||
|
outs = {}
|
||
|
for solver in ("svd", "eigh"):
|
||
|
ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver=solver)
|
||
|
sources = ica.fit_transform(m.T)
|
||
|
outs[solver] = sources
|
||
|
assert ica.components_.shape == (2, 2)
|
||
|
assert sources.shape == (1000, 2)
|
||
|
|
||
|
# compared numbers are not all on the same magnitude. Using a small atol to
|
||
|
# make the test less brittle
|
||
|
assert_allclose(outs["eigh"], outs["svd"], atol=1e-12)
|
||
|
|
||
|
|
||
|
def test_fastica_eigh_low_rank_warning(global_random_seed):
|
||
|
"""Test FastICA eigh solver raises warning for low-rank data."""
|
||
|
rng = np.random.RandomState(global_random_seed)
|
||
|
A = rng.randn(10, 2)
|
||
|
X = A @ A.T
|
||
|
ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver="eigh")
|
||
|
msg = "There are some small singular values"
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
ica.fit(X)
|