Inzynierka/Lib/site-packages/sklearn/decomposition/tests/test_nmf.py

909 lines
28 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
import re
import sys
from io import StringIO
import numpy as np
import scipy.sparse as sp
from scipy import linalg
from sklearn.decomposition import NMF, MiniBatchNMF
from sklearn.decomposition import non_negative_factorization
from sklearn.decomposition import _nmf as nmf # For testing internals
from scipy.sparse import csc_matrix
import pytest
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import ignore_warnings
from sklearn.utils.extmath import squared_norm
from sklearn.base import clone
from sklearn.exceptions import ConvergenceWarning
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_convergence_warning(Estimator, solver):
convergence_warning = (
"Maximum number of iterations 1 reached. Increase it to improve convergence."
)
A = np.ones((2, 2))
with pytest.warns(ConvergenceWarning, match=convergence_warning):
Estimator(max_iter=1, **solver).fit(A)
def test_initialize_nn_output():
# Test that initialization does not return negative values
rng = np.random.mtrand.RandomState(42)
data = np.abs(rng.randn(10, 10))
for init in ("random", "nndsvd", "nndsvda", "nndsvdar"):
W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0)
assert not ((W < 0).any() or (H < 0).any())
@pytest.mark.filterwarnings(
r"ignore:The multiplicative update \('mu'\) solver cannot update zeros present in"
r" the initialization"
)
def test_parameter_checking():
# Here we only check for invalid parameter values that are not already
# automatically tested in the common tests.
A = np.ones((2, 2))
msg = "Invalid beta_loss parameter: solver 'cd' does not handle beta_loss = 1.0"
with pytest.raises(ValueError, match=msg):
NMF(solver="cd", beta_loss=1.0).fit(A)
msg = "Negative values in data passed to"
with pytest.raises(ValueError, match=msg):
NMF().fit(-A)
clf = NMF(2, tol=0.1).fit(A)
with pytest.raises(ValueError, match=msg):
clf.transform(-A)
with pytest.raises(ValueError, match=msg):
nmf._initialize_nmf(-A, 2, "nndsvd")
for init in ["nndsvd", "nndsvda", "nndsvdar"]:
msg = re.escape(
"init = '{}' can only be used when "
"n_components <= min(n_samples, n_features)".format(init)
)
with pytest.raises(ValueError, match=msg):
NMF(3, init=init).fit(A)
with pytest.raises(ValueError, match=msg):
MiniBatchNMF(3, init=init).fit(A)
with pytest.raises(ValueError, match=msg):
nmf._initialize_nmf(A, 3, init)
def test_initialize_close():
# Test NNDSVD error
# Test that _initialize_nmf error is less than the standard deviation of
# the entries in the matrix.
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(10, 10))
W, H = nmf._initialize_nmf(A, 10, init="nndsvd")
error = linalg.norm(np.dot(W, H) - A)
sdev = linalg.norm(A - A.mean())
assert error <= sdev
def test_initialize_variants():
# Test NNDSVD variants correctness
# Test that the variants 'nndsvda' and 'nndsvdar' differ from basic
# 'nndsvd' only where the basic version has zeros.
rng = np.random.mtrand.RandomState(42)
data = np.abs(rng.randn(10, 10))
W0, H0 = nmf._initialize_nmf(data, 10, init="nndsvd")
Wa, Ha = nmf._initialize_nmf(data, 10, init="nndsvda")
War, Har = nmf._initialize_nmf(data, 10, init="nndsvdar", random_state=0)
for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)):
assert_almost_equal(evl[ref != 0], ref[ref != 0])
# ignore UserWarning raised when both solver='mu' and init='nndsvd'
@ignore_warnings(category=UserWarning)
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
@pytest.mark.parametrize("init", (None, "nndsvd", "nndsvda", "nndsvdar", "random"))
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
def test_nmf_fit_nn_output(Estimator, solver, init, alpha_W, alpha_H):
# Test that the decomposition does not contain negative values
A = np.c_[5.0 - np.arange(1, 6), 5.0 + np.arange(1, 6)]
model = Estimator(
n_components=2,
init=init,
alpha_W=alpha_W,
alpha_H=alpha_H,
random_state=0,
**solver,
)
transf = model.fit_transform(A)
assert not ((model.components_ < 0).any() or (transf < 0).any())
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_fit_close(Estimator, solver):
rng = np.random.mtrand.RandomState(42)
# Test that the fit is not too far away
pnmf = Estimator(
5,
init="nndsvdar",
random_state=0,
max_iter=600,
**solver,
)
X = np.abs(rng.randn(6, 5))
assert pnmf.fit(X).reconstruction_err_ < 0.1
def test_nmf_true_reconstruction():
# Test that the fit is not too far away from an exact solution
# (by construction)
n_samples = 15
n_features = 10
n_components = 5
beta_loss = 1
batch_size = 3
max_iter = 1000
rng = np.random.mtrand.RandomState(42)
W_true = np.zeros([n_samples, n_components])
W_array = np.abs(rng.randn(n_samples))
for j in range(n_components):
W_true[j % n_samples, j] = W_array[j % n_samples]
H_true = np.zeros([n_components, n_features])
H_array = np.abs(rng.randn(n_components))
for j in range(n_features):
H_true[j % n_components, j] = H_array[j % n_components]
X = np.dot(W_true, H_true)
model = NMF(
n_components=n_components,
solver="mu",
beta_loss=beta_loss,
max_iter=max_iter,
random_state=0,
)
transf = model.fit_transform(X)
X_calc = np.dot(transf, model.components_)
assert model.reconstruction_err_ < 0.1
assert_allclose(X, X_calc)
mbmodel = MiniBatchNMF(
n_components=n_components,
beta_loss=beta_loss,
batch_size=batch_size,
random_state=0,
max_iter=max_iter,
)
transf = mbmodel.fit_transform(X)
X_calc = np.dot(transf, mbmodel.components_)
assert mbmodel.reconstruction_err_ < 0.1
assert_allclose(X, X_calc, atol=1)
@pytest.mark.parametrize("solver", ["cd", "mu"])
def test_nmf_transform(solver):
# Test that fit_transform is equivalent to fit.transform for NMF
# Test that NMF.transform returns close values
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(6, 5))
m = NMF(
solver=solver,
n_components=3,
init="random",
random_state=0,
tol=1e-6,
)
ft = m.fit_transform(A)
t = m.transform(A)
assert_allclose(ft, t, atol=1e-1)
def test_minibatch_nmf_transform():
# Test that fit_transform is equivalent to fit.transform for MiniBatchNMF
# Only guaranteed with fresh restarts
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(6, 5))
m = MiniBatchNMF(
n_components=3,
random_state=0,
tol=1e-3,
fresh_restarts=True,
)
ft = m.fit_transform(A)
t = m.transform(A)
assert_allclose(ft, t)
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_transform_custom_init(Estimator, solver):
# Smoke test that checks if NMF.transform works with custom initialization
random_state = np.random.RandomState(0)
A = np.abs(random_state.randn(6, 5))
n_components = 4
avg = np.sqrt(A.mean() / n_components)
H_init = np.abs(avg * random_state.randn(n_components, 5))
W_init = np.abs(avg * random_state.randn(6, n_components))
m = Estimator(
n_components=n_components, init="custom", random_state=0, tol=1e-3, **solver
)
m.fit_transform(A, W=W_init, H=H_init)
m.transform(A)
@pytest.mark.parametrize("solver", ("cd", "mu"))
def test_nmf_inverse_transform(solver):
# Test that NMF.inverse_transform returns close values
random_state = np.random.RandomState(0)
A = np.abs(random_state.randn(6, 4))
m = NMF(
solver=solver,
n_components=4,
init="random",
random_state=0,
max_iter=1000,
)
ft = m.fit_transform(A)
A_new = m.inverse_transform(ft)
assert_array_almost_equal(A, A_new, decimal=2)
def test_mbnmf_inverse_transform():
# Test that MiniBatchNMF.transform followed by MiniBatchNMF.inverse_transform
# is close to the identity
rng = np.random.RandomState(0)
A = np.abs(rng.randn(6, 4))
nmf = MiniBatchNMF(
random_state=rng,
max_iter=500,
init="nndsvdar",
fresh_restarts=True,
)
ft = nmf.fit_transform(A)
A_new = nmf.inverse_transform(ft)
assert_allclose(A, A_new, rtol=1e-3, atol=1e-2)
@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
def test_n_components_greater_n_features(Estimator):
# Smoke test for the case of more components than features.
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(30, 10))
Estimator(n_components=15, random_state=0, tol=1e-2).fit(A)
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
def test_nmf_sparse_input(Estimator, solver, alpha_W, alpha_H):
# Test that sparse matrices are accepted as input
from scipy.sparse import csc_matrix
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(10, 10))
A[:, 2 * np.arange(5)] = 0
A_sparse = csc_matrix(A)
est1 = Estimator(
n_components=5,
init="random",
alpha_W=alpha_W,
alpha_H=alpha_H,
random_state=0,
tol=0,
max_iter=100,
**solver,
)
est2 = clone(est1)
W1 = est1.fit_transform(A)
W2 = est2.fit_transform(A_sparse)
H1 = est1.components_
H2 = est2.components_
assert_allclose(W1, W2)
assert_allclose(H1, H2)
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_sparse_transform(Estimator, solver):
# Test that transform works on sparse data. Issue #2124
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(3, 2))
A[1, 1] = 0
A = csc_matrix(A)
model = Estimator(random_state=0, n_components=2, max_iter=400, **solver)
A_fit_tr = model.fit_transform(A)
A_tr = model.transform(A)
assert_allclose(A_fit_tr, A_tr, atol=1e-1)
@pytest.mark.parametrize("init", ["random", "nndsvd"])
@pytest.mark.parametrize("solver", ("cd", "mu"))
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
def test_non_negative_factorization_consistency(init, solver, alpha_W, alpha_H):
# Test that the function is called in the same way, either directly
# or through the NMF class
max_iter = 500
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(10, 10))
A[:, 2 * np.arange(5)] = 0
W_nmf, H, _ = non_negative_factorization(
A,
init=init,
solver=solver,
max_iter=max_iter,
alpha_W=alpha_W,
alpha_H=alpha_H,
random_state=1,
tol=1e-2,
)
W_nmf_2, H, _ = non_negative_factorization(
A,
H=H,
update_H=False,
init=init,
solver=solver,
max_iter=max_iter,
alpha_W=alpha_W,
alpha_H=alpha_H,
random_state=1,
tol=1e-2,
)
model_class = NMF(
init=init,
solver=solver,
max_iter=max_iter,
alpha_W=alpha_W,
alpha_H=alpha_H,
random_state=1,
tol=1e-2,
)
W_cls = model_class.fit_transform(A)
W_cls_2 = model_class.transform(A)
assert_allclose(W_nmf, W_cls)
assert_allclose(W_nmf_2, W_cls_2)
def test_non_negative_factorization_checking():
# Note that the validity of parameter types and range of possible values
# for scalar numerical or str parameters is already checked in the common
# tests. Here we only check for problems that cannot be captured by simple
# declarative constraints on the valid parameter values.
A = np.ones((2, 2))
# Test parameters checking in public function
nnmf = non_negative_factorization
msg = re.escape("Negative values in data passed to NMF (input H)")
with pytest.raises(ValueError, match=msg):
nnmf(A, A, -A, 2, init="custom")
msg = re.escape("Negative values in data passed to NMF (input W)")
with pytest.raises(ValueError, match=msg):
nnmf(A, -A, A, 2, init="custom")
msg = re.escape("Array passed to NMF (input H) is full of zeros")
with pytest.raises(ValueError, match=msg):
nnmf(A, A, 0 * A, 2, init="custom")
def _beta_divergence_dense(X, W, H, beta):
"""Compute the beta-divergence of X and W.H for dense array only.
Used as a reference for testing nmf._beta_divergence.
"""
WH = np.dot(W, H)
if beta == 2:
return squared_norm(X - WH) / 2
WH_Xnonzero = WH[X != 0]
X_nonzero = X[X != 0]
np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero)
if beta == 1:
res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero))
res += WH.sum() - X.sum()
elif beta == 0:
div = X_nonzero / WH_Xnonzero
res = np.sum(div) - X.size - np.sum(np.log(div))
else:
res = (X_nonzero**beta).sum()
res += (beta - 1) * (WH**beta).sum()
res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum()
res /= beta * (beta - 1)
return res
def test_beta_divergence():
# Compare _beta_divergence with the reference _beta_divergence_dense
n_samples = 20
n_features = 10
n_components = 5
beta_losses = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0]
# initialization
rng = np.random.mtrand.RandomState(42)
X = rng.randn(n_samples, n_features)
np.clip(X, 0, None, out=X)
X_csr = sp.csr_matrix(X)
W, H = nmf._initialize_nmf(X, n_components, init="random", random_state=42)
for beta in beta_losses:
ref = _beta_divergence_dense(X, W, H, beta)
loss = nmf._beta_divergence(X, W, H, beta)
loss_csr = nmf._beta_divergence(X_csr, W, H, beta)
assert_almost_equal(ref, loss, decimal=7)
assert_almost_equal(ref, loss_csr, decimal=7)
def test_special_sparse_dot():
# Test the function that computes np.dot(W, H), only where X is non zero.
n_samples = 10
n_features = 5
n_components = 3
rng = np.random.mtrand.RandomState(42)
X = rng.randn(n_samples, n_features)
np.clip(X, 0, None, out=X)
X_csr = sp.csr_matrix(X)
W = np.abs(rng.randn(n_samples, n_components))
H = np.abs(rng.randn(n_components, n_features))
WH_safe = nmf._special_sparse_dot(W, H, X_csr)
WH = nmf._special_sparse_dot(W, H, X)
# test that both results have same values, in X_csr nonzero elements
ii, jj = X_csr.nonzero()
WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel()
assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10)
# test that WH_safe and X_csr have the same sparse structure
assert_array_equal(WH_safe.indices, X_csr.indices)
assert_array_equal(WH_safe.indptr, X_csr.indptr)
assert_array_equal(WH_safe.shape, X_csr.shape)
@ignore_warnings(category=ConvergenceWarning)
def test_nmf_multiplicative_update_sparse():
# Compare sparse and dense input in multiplicative update NMF
# Also test continuity of the results with respect to beta_loss parameter
n_samples = 20
n_features = 10
n_components = 5
alpha = 0.1
l1_ratio = 0.5
n_iter = 20
# initialization
rng = np.random.mtrand.RandomState(1337)
X = rng.randn(n_samples, n_features)
X = np.abs(X)
X_csr = sp.csr_matrix(X)
W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42)
for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5):
# Reference with dense array X
W, H = W0.copy(), H0.copy()
W1, H1, _ = non_negative_factorization(
X,
W,
H,
n_components,
init="custom",
update_H=True,
solver="mu",
beta_loss=beta_loss,
max_iter=n_iter,
alpha_W=alpha,
l1_ratio=l1_ratio,
random_state=42,
)
# Compare with sparse X
W, H = W0.copy(), H0.copy()
W2, H2, _ = non_negative_factorization(
X_csr,
W,
H,
n_components,
init="custom",
update_H=True,
solver="mu",
beta_loss=beta_loss,
max_iter=n_iter,
alpha_W=alpha,
l1_ratio=l1_ratio,
random_state=42,
)
assert_allclose(W1, W2, atol=1e-7)
assert_allclose(H1, H2, atol=1e-7)
# Compare with almost same beta_loss, since some values have a specific
# behavior, but the results should be continuous w.r.t beta_loss
beta_loss -= 1.0e-5
W, H = W0.copy(), H0.copy()
W3, H3, _ = non_negative_factorization(
X_csr,
W,
H,
n_components,
init="custom",
update_H=True,
solver="mu",
beta_loss=beta_loss,
max_iter=n_iter,
alpha_W=alpha,
l1_ratio=l1_ratio,
random_state=42,
)
assert_allclose(W1, W3, atol=1e-4)
assert_allclose(H1, H3, atol=1e-4)
def test_nmf_negative_beta_loss():
# Test that an error is raised if beta_loss < 0 and X contains zeros.
# Test that the output has not NaN values when the input contains zeros.
n_samples = 6
n_features = 5
n_components = 3
rng = np.random.mtrand.RandomState(42)
X = rng.randn(n_samples, n_features)
np.clip(X, 0, None, out=X)
X_csr = sp.csr_matrix(X)
def _assert_nmf_no_nan(X, beta_loss):
W, H, _ = non_negative_factorization(
X,
init="random",
n_components=n_components,
solver="mu",
beta_loss=beta_loss,
random_state=0,
max_iter=1000,
)
assert not np.any(np.isnan(W))
assert not np.any(np.isnan(H))
msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
for beta_loss in (-0.6, 0.0):
with pytest.raises(ValueError, match=msg):
_assert_nmf_no_nan(X, beta_loss)
_assert_nmf_no_nan(X + 1e-9, beta_loss)
for beta_loss in (0.2, 1.0, 1.2, 2.0, 2.5):
_assert_nmf_no_nan(X, beta_loss)
_assert_nmf_no_nan(X_csr, beta_loss)
@pytest.mark.parametrize("beta_loss", [-0.5, 0.0])
def test_minibatch_nmf_negative_beta_loss(beta_loss):
"""Check that an error is raised if beta_loss < 0 and X contains zeros."""
rng = np.random.RandomState(0)
X = rng.normal(size=(6, 5))
X[X < 0] = 0
nmf = MiniBatchNMF(beta_loss=beta_loss, random_state=0)
msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
with pytest.raises(ValueError, match=msg):
nmf.fit(X)
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_regularization(Estimator, solver):
# Test the effect of L1 and L2 regularizations
n_samples = 6
n_features = 5
n_components = 3
rng = np.random.mtrand.RandomState(42)
X = np.abs(rng.randn(n_samples, n_features))
# L1 regularization should increase the number of zeros
l1_ratio = 1.0
regul = Estimator(
n_components=n_components,
alpha_W=0.5,
l1_ratio=l1_ratio,
random_state=42,
**solver,
)
model = Estimator(
n_components=n_components,
alpha_W=0.0,
l1_ratio=l1_ratio,
random_state=42,
**solver,
)
W_regul = regul.fit_transform(X)
W_model = model.fit_transform(X)
H_regul = regul.components_
H_model = model.components_
eps = np.finfo(np.float64).eps
W_regul_n_zeros = W_regul[W_regul <= eps].size
W_model_n_zeros = W_model[W_model <= eps].size
H_regul_n_zeros = H_regul[H_regul <= eps].size
H_model_n_zeros = H_model[H_model <= eps].size
assert W_regul_n_zeros > W_model_n_zeros
assert H_regul_n_zeros > H_model_n_zeros
# L2 regularization should decrease the sum of the squared norm
# of the matrices W and H
l1_ratio = 0.0
regul = Estimator(
n_components=n_components,
alpha_W=0.5,
l1_ratio=l1_ratio,
random_state=42,
**solver,
)
model = Estimator(
n_components=n_components,
alpha_W=0.0,
l1_ratio=l1_ratio,
random_state=42,
**solver,
)
W_regul = regul.fit_transform(X)
W_model = model.fit_transform(X)
H_regul = regul.components_
H_model = model.components_
assert (linalg.norm(W_model)) ** 2.0 + (linalg.norm(H_model)) ** 2.0 > (
linalg.norm(W_regul)
) ** 2.0 + (linalg.norm(H_regul)) ** 2.0
@ignore_warnings(category=ConvergenceWarning)
@pytest.mark.parametrize("solver", ("cd", "mu"))
def test_nmf_decreasing(solver):
# test that the objective function is decreasing at each iteration
n_samples = 20
n_features = 15
n_components = 10
alpha = 0.1
l1_ratio = 0.5
tol = 0.0
# initialization
rng = np.random.mtrand.RandomState(42)
X = rng.randn(n_samples, n_features)
np.abs(X, X)
W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42)
for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5):
if solver != "mu" and beta_loss != 2:
# not implemented
continue
W, H = W0.copy(), H0.copy()
previous_loss = None
for _ in range(30):
# one more iteration starting from the previous results
W, H, _ = non_negative_factorization(
X,
W,
H,
beta_loss=beta_loss,
init="custom",
n_components=n_components,
max_iter=1,
alpha_W=alpha,
solver=solver,
tol=tol,
l1_ratio=l1_ratio,
verbose=0,
random_state=0,
update_H=True,
)
loss = (
nmf._beta_divergence(X, W, H, beta_loss)
+ alpha * l1_ratio * n_features * W.sum()
+ alpha * l1_ratio * n_samples * H.sum()
+ alpha * (1 - l1_ratio) * n_features * (W**2).sum()
+ alpha * (1 - l1_ratio) * n_samples * (H**2).sum()
)
if previous_loss is not None:
assert previous_loss > loss
previous_loss = loss
def test_nmf_underflow():
# Regression test for an underflow issue in _beta_divergence
rng = np.random.RandomState(0)
n_samples, n_features, n_components = 10, 2, 2
X = np.abs(rng.randn(n_samples, n_features)) * 10
W = np.abs(rng.randn(n_samples, n_components)) * 10
H = np.abs(rng.randn(n_components, n_features))
X[0, 0] = 0
ref = nmf._beta_divergence(X, W, H, beta=1.0)
X[0, 0] = 1e-323
res = nmf._beta_divergence(X, W, H, beta=1.0)
assert_almost_equal(res, ref)
@pytest.mark.parametrize(
"dtype_in, dtype_out",
[
(np.float32, np.float32),
(np.float64, np.float64),
(np.int32, np.float64),
(np.int64, np.float64),
],
)
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_dtype_match(Estimator, solver, dtype_in, dtype_out):
# Check that NMF preserves dtype (float32 and float64)
X = np.random.RandomState(0).randn(20, 15).astype(dtype_in, copy=False)
np.abs(X, out=X)
nmf = Estimator(alpha_W=1.0, alpha_H=1.0, tol=1e-2, random_state=0, **solver)
assert nmf.fit(X).transform(X).dtype == dtype_out
assert nmf.fit_transform(X).dtype == dtype_out
assert nmf.components_.dtype == dtype_out
@pytest.mark.parametrize(
["Estimator", "solver"],
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
)
def test_nmf_float32_float64_consistency(Estimator, solver):
# Check that the result of NMF is the same between float32 and float64
X = np.random.RandomState(0).randn(50, 7)
np.abs(X, out=X)
nmf32 = Estimator(random_state=0, tol=1e-3, **solver)
W32 = nmf32.fit_transform(X.astype(np.float32))
nmf64 = Estimator(random_state=0, tol=1e-3, **solver)
W64 = nmf64.fit_transform(X)
assert_allclose(W32, W64, atol=1e-5)
@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
def test_nmf_custom_init_dtype_error(Estimator):
# Check that an error is raise if custom H and/or W don't have the same
# dtype as X.
rng = np.random.RandomState(0)
X = rng.random_sample((20, 15))
H = rng.random_sample((15, 15)).astype(np.float32)
W = rng.random_sample((20, 15))
with pytest.raises(TypeError, match="should have the same dtype as X"):
Estimator(init="custom").fit(X, H=H, W=W)
with pytest.raises(TypeError, match="should have the same dtype as X"):
non_negative_factorization(X, H=H, update_H=False)
@pytest.mark.parametrize("beta_loss", [-0.5, 0, 0.5, 1, 1.5, 2, 2.5])
def test_nmf_minibatchnmf_equivalence(beta_loss):
# Test that MiniBatchNMF is equivalent to NMF when batch_size = n_samples and
# forget_factor 0.0 (stopping criterion put aside)
rng = np.random.mtrand.RandomState(42)
X = np.abs(rng.randn(48, 5))
nmf = NMF(
n_components=5,
beta_loss=beta_loss,
solver="mu",
random_state=0,
tol=0,
)
mbnmf = MiniBatchNMF(
n_components=5,
beta_loss=beta_loss,
random_state=0,
tol=0,
max_no_improvement=None,
batch_size=X.shape[0],
forget_factor=0.0,
)
W = nmf.fit_transform(X)
mbW = mbnmf.fit_transform(X)
assert_allclose(W, mbW)
def test_minibatch_nmf_partial_fit():
# Check fit / partial_fit equivalence. Applicable only with fresh restarts.
rng = np.random.mtrand.RandomState(42)
X = np.abs(rng.randn(100, 5))
n_components = 5
batch_size = 10
max_iter = 2
mbnmf1 = MiniBatchNMF(
n_components=n_components,
init="custom",
random_state=0,
max_iter=max_iter,
batch_size=batch_size,
tol=0,
max_no_improvement=None,
fresh_restarts=False,
)
mbnmf2 = MiniBatchNMF(n_components=n_components, init="custom", random_state=0)
# Force the same init of H (W is recomputed anyway) to be able to compare results.
W, H = nmf._initialize_nmf(
X, n_components=n_components, init="random", random_state=0
)
mbnmf1.fit(X, W=W, H=H)
for i in range(max_iter):
for j in range(batch_size):
mbnmf2.partial_fit(X[j : j + batch_size], W=W[:batch_size], H=H)
assert mbnmf1.n_steps_ == mbnmf2.n_steps_
assert_allclose(mbnmf1.components_, mbnmf2.components_)
def test_feature_names_out():
"""Check feature names out for NMF."""
random_state = np.random.RandomState(0)
X = np.abs(random_state.randn(10, 4))
nmf = NMF(n_components=3).fit(X)
names = nmf.get_feature_names_out()
assert_array_equal([f"nmf{i}" for i in range(3)], names)
def test_minibatch_nmf_verbose():
# Check verbose mode of MiniBatchNMF for better coverage.
A = np.random.RandomState(0).random_sample((100, 10))
nmf = MiniBatchNMF(tol=1e-2, random_state=0, verbose=1)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
nmf.fit(A)
finally:
sys.stdout = old_stdout