1150 lines
42 KiB
Python
1150 lines
42 KiB
Python
|
# Author: Alexander Fabisch -- <afabisch@informatik.uni-bremen.de>
|
||
|
# Author: Christopher Moody <chrisemoody@gmail.com>
|
||
|
# Author: Nick Travers <nickt@squareup.com>
|
||
|
# License: BSD 3 clause (C) 2014
|
||
|
|
||
|
# This is the exact and Barnes-Hut t-SNE implementation. There are other
|
||
|
# modifications of the algorithm:
|
||
|
# * Fast Optimization for t-SNE:
|
||
|
# https://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf
|
||
|
|
||
|
import warnings
|
||
|
from time import time
|
||
|
import numpy as np
|
||
|
from scipy import linalg
|
||
|
from scipy.spatial.distance import pdist
|
||
|
from scipy.spatial.distance import squareform
|
||
|
from scipy.sparse import csr_matrix, issparse
|
||
|
from numbers import Integral, Real
|
||
|
from ..neighbors import NearestNeighbors
|
||
|
from ..base import BaseEstimator
|
||
|
from ..utils import check_random_state
|
||
|
from ..utils._openmp_helpers import _openmp_effective_n_threads
|
||
|
from ..utils.validation import check_non_negative
|
||
|
from ..utils._param_validation import Interval, StrOptions, Hidden
|
||
|
from ..decomposition import PCA
|
||
|
from ..metrics.pairwise import pairwise_distances, _VALID_METRICS
|
||
|
|
||
|
# mypy error: Module 'sklearn.manifold' has no attribute '_utils'
|
||
|
from . import _utils # type: ignore
|
||
|
|
||
|
# mypy error: Module 'sklearn.manifold' has no attribute '_barnes_hut_tsne'
|
||
|
from . import _barnes_hut_tsne # type: ignore
|
||
|
|
||
|
MACHINE_EPSILON = np.finfo(np.double).eps
|
||
|
|
||
|
|
||
|
def _joint_probabilities(distances, desired_perplexity, verbose):
|
||
|
"""Compute joint probabilities p_ij from distances.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
distances : ndarray of shape (n_samples * (n_samples-1) / 2,)
|
||
|
Distances of samples are stored as condensed matrices, i.e.
|
||
|
we omit the diagonal and duplicate entries and store everything
|
||
|
in a one-dimensional array.
|
||
|
|
||
|
desired_perplexity : float
|
||
|
Desired perplexity of the joint probability distributions.
|
||
|
|
||
|
verbose : int
|
||
|
Verbosity level.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
P : ndarray of shape (n_samples * (n_samples-1) / 2,)
|
||
|
Condensed joint probability matrix.
|
||
|
"""
|
||
|
# Compute conditional probabilities such that they approximately match
|
||
|
# the desired perplexity
|
||
|
distances = distances.astype(np.float32, copy=False)
|
||
|
conditional_P = _utils._binary_search_perplexity(
|
||
|
distances, desired_perplexity, verbose
|
||
|
)
|
||
|
P = conditional_P + conditional_P.T
|
||
|
sum_P = np.maximum(np.sum(P), MACHINE_EPSILON)
|
||
|
P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON)
|
||
|
return P
|
||
|
|
||
|
|
||
|
def _joint_probabilities_nn(distances, desired_perplexity, verbose):
|
||
|
"""Compute joint probabilities p_ij from distances using just nearest
|
||
|
neighbors.
|
||
|
|
||
|
This method is approximately equal to _joint_probabilities. The latter
|
||
|
is O(N), but limiting the joint probability to nearest neighbors improves
|
||
|
this substantially to O(uN).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
distances : sparse matrix of shape (n_samples, n_samples)
|
||
|
Distances of samples to its n_neighbors nearest neighbors. All other
|
||
|
distances are left to zero (and are not materialized in memory).
|
||
|
Matrix should be of CSR format.
|
||
|
|
||
|
desired_perplexity : float
|
||
|
Desired perplexity of the joint probability distributions.
|
||
|
|
||
|
verbose : int
|
||
|
Verbosity level.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
P : sparse matrix of shape (n_samples, n_samples)
|
||
|
Condensed joint probability matrix with only nearest neighbors. Matrix
|
||
|
will be of CSR format.
|
||
|
"""
|
||
|
t0 = time()
|
||
|
# Compute conditional probabilities such that they approximately match
|
||
|
# the desired perplexity
|
||
|
distances.sort_indices()
|
||
|
n_samples = distances.shape[0]
|
||
|
distances_data = distances.data.reshape(n_samples, -1)
|
||
|
distances_data = distances_data.astype(np.float32, copy=False)
|
||
|
conditional_P = _utils._binary_search_perplexity(
|
||
|
distances_data, desired_perplexity, verbose
|
||
|
)
|
||
|
assert np.all(np.isfinite(conditional_P)), "All probabilities should be finite"
|
||
|
|
||
|
# Symmetrize the joint probability distribution using sparse operations
|
||
|
P = csr_matrix(
|
||
|
(conditional_P.ravel(), distances.indices, distances.indptr),
|
||
|
shape=(n_samples, n_samples),
|
||
|
)
|
||
|
P = P + P.T
|
||
|
|
||
|
# Normalize the joint probability distribution
|
||
|
sum_P = np.maximum(P.sum(), MACHINE_EPSILON)
|
||
|
P /= sum_P
|
||
|
|
||
|
assert np.all(np.abs(P.data) <= 1.0)
|
||
|
if verbose >= 2:
|
||
|
duration = time() - t0
|
||
|
print("[t-SNE] Computed conditional probabilities in {:.3f}s".format(duration))
|
||
|
return P
|
||
|
|
||
|
|
||
|
def _kl_divergence(
|
||
|
params,
|
||
|
P,
|
||
|
degrees_of_freedom,
|
||
|
n_samples,
|
||
|
n_components,
|
||
|
skip_num_points=0,
|
||
|
compute_error=True,
|
||
|
):
|
||
|
"""t-SNE objective function: gradient of the KL divergence
|
||
|
of p_ijs and q_ijs and the absolute error.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray of shape (n_params,)
|
||
|
Unraveled embedding.
|
||
|
|
||
|
P : ndarray of shape (n_samples * (n_samples-1) / 2,)
|
||
|
Condensed joint probability matrix.
|
||
|
|
||
|
degrees_of_freedom : int
|
||
|
Degrees of freedom of the Student's-t distribution.
|
||
|
|
||
|
n_samples : int
|
||
|
Number of samples.
|
||
|
|
||
|
n_components : int
|
||
|
Dimension of the embedded space.
|
||
|
|
||
|
skip_num_points : int, default=0
|
||
|
This does not compute the gradient for points with indices below
|
||
|
`skip_num_points`. This is useful when computing transforms of new
|
||
|
data where you'd like to keep the old data fixed.
|
||
|
|
||
|
compute_error: bool, default=True
|
||
|
If False, the kl_divergence is not computed and returns NaN.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kl_divergence : float
|
||
|
Kullback-Leibler divergence of p_ij and q_ij.
|
||
|
|
||
|
grad : ndarray of shape (n_params,)
|
||
|
Unraveled gradient of the Kullback-Leibler divergence with respect to
|
||
|
the embedding.
|
||
|
"""
|
||
|
X_embedded = params.reshape(n_samples, n_components)
|
||
|
|
||
|
# Q is a heavy-tailed distribution: Student's t-distribution
|
||
|
dist = pdist(X_embedded, "sqeuclidean")
|
||
|
dist /= degrees_of_freedom
|
||
|
dist += 1.0
|
||
|
dist **= (degrees_of_freedom + 1.0) / -2.0
|
||
|
Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON)
|
||
|
|
||
|
# Optimization trick below: np.dot(x, y) is faster than
|
||
|
# np.sum(x * y) because it calls BLAS
|
||
|
|
||
|
# Objective: C (Kullback-Leibler divergence of P and Q)
|
||
|
if compute_error:
|
||
|
kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q))
|
||
|
else:
|
||
|
kl_divergence = np.nan
|
||
|
|
||
|
# Gradient: dC/dY
|
||
|
# pdist always returns double precision distances. Thus we need to take
|
||
|
grad = np.ndarray((n_samples, n_components), dtype=params.dtype)
|
||
|
PQd = squareform((P - Q) * dist)
|
||
|
for i in range(skip_num_points, n_samples):
|
||
|
grad[i] = np.dot(np.ravel(PQd[i], order="K"), X_embedded[i] - X_embedded)
|
||
|
grad = grad.ravel()
|
||
|
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
|
||
|
grad *= c
|
||
|
|
||
|
return kl_divergence, grad
|
||
|
|
||
|
|
||
|
def _kl_divergence_bh(
|
||
|
params,
|
||
|
P,
|
||
|
degrees_of_freedom,
|
||
|
n_samples,
|
||
|
n_components,
|
||
|
angle=0.5,
|
||
|
skip_num_points=0,
|
||
|
verbose=False,
|
||
|
compute_error=True,
|
||
|
num_threads=1,
|
||
|
):
|
||
|
"""t-SNE objective function: KL divergence of p_ijs and q_ijs.
|
||
|
|
||
|
Uses Barnes-Hut tree methods to calculate the gradient that
|
||
|
runs in O(NlogN) instead of O(N^2).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : ndarray of shape (n_params,)
|
||
|
Unraveled embedding.
|
||
|
|
||
|
P : sparse matrix of shape (n_samples, n_sample)
|
||
|
Sparse approximate joint probability matrix, computed only for the
|
||
|
k nearest-neighbors and symmetrized. Matrix should be of CSR format.
|
||
|
|
||
|
degrees_of_freedom : int
|
||
|
Degrees of freedom of the Student's-t distribution.
|
||
|
|
||
|
n_samples : int
|
||
|
Number of samples.
|
||
|
|
||
|
n_components : int
|
||
|
Dimension of the embedded space.
|
||
|
|
||
|
angle : float, default=0.5
|
||
|
This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
|
||
|
'angle' is the angular size (referred to as theta in [3]) of a distant
|
||
|
node as measured from a point. If this size is below 'angle' then it is
|
||
|
used as a summary node of all points contained within it.
|
||
|
This method is not very sensitive to changes in this parameter
|
||
|
in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
|
||
|
computation time and angle greater 0.8 has quickly increasing error.
|
||
|
|
||
|
skip_num_points : int, default=0
|
||
|
This does not compute the gradient for points with indices below
|
||
|
`skip_num_points`. This is useful when computing transforms of new
|
||
|
data where you'd like to keep the old data fixed.
|
||
|
|
||
|
verbose : int, default=False
|
||
|
Verbosity level.
|
||
|
|
||
|
compute_error: bool, default=True
|
||
|
If False, the kl_divergence is not computed and returns NaN.
|
||
|
|
||
|
num_threads : int, default=1
|
||
|
Number of threads used to compute the gradient. This is set here to
|
||
|
avoid calling _openmp_effective_n_threads for each gradient step.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kl_divergence : float
|
||
|
Kullback-Leibler divergence of p_ij and q_ij.
|
||
|
|
||
|
grad : ndarray of shape (n_params,)
|
||
|
Unraveled gradient of the Kullback-Leibler divergence with respect to
|
||
|
the embedding.
|
||
|
"""
|
||
|
params = params.astype(np.float32, copy=False)
|
||
|
X_embedded = params.reshape(n_samples, n_components)
|
||
|
|
||
|
val_P = P.data.astype(np.float32, copy=False)
|
||
|
neighbors = P.indices.astype(np.int64, copy=False)
|
||
|
indptr = P.indptr.astype(np.int64, copy=False)
|
||
|
|
||
|
grad = np.zeros(X_embedded.shape, dtype=np.float32)
|
||
|
error = _barnes_hut_tsne.gradient(
|
||
|
val_P,
|
||
|
X_embedded,
|
||
|
neighbors,
|
||
|
indptr,
|
||
|
grad,
|
||
|
angle,
|
||
|
n_components,
|
||
|
verbose,
|
||
|
dof=degrees_of_freedom,
|
||
|
compute_error=compute_error,
|
||
|
num_threads=num_threads,
|
||
|
)
|
||
|
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
|
||
|
grad = grad.ravel()
|
||
|
grad *= c
|
||
|
|
||
|
return error, grad
|
||
|
|
||
|
|
||
|
def _gradient_descent(
|
||
|
objective,
|
||
|
p0,
|
||
|
it,
|
||
|
n_iter,
|
||
|
n_iter_check=1,
|
||
|
n_iter_without_progress=300,
|
||
|
momentum=0.8,
|
||
|
learning_rate=200.0,
|
||
|
min_gain=0.01,
|
||
|
min_grad_norm=1e-7,
|
||
|
verbose=0,
|
||
|
args=None,
|
||
|
kwargs=None,
|
||
|
):
|
||
|
"""Batch gradient descent with momentum and individual gains.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
objective : callable
|
||
|
Should return a tuple of cost and gradient for a given parameter
|
||
|
vector. When expensive to compute, the cost can optionally
|
||
|
be None and can be computed every n_iter_check steps using
|
||
|
the objective_error function.
|
||
|
|
||
|
p0 : array-like of shape (n_params,)
|
||
|
Initial parameter vector.
|
||
|
|
||
|
it : int
|
||
|
Current number of iterations (this function will be called more than
|
||
|
once during the optimization).
|
||
|
|
||
|
n_iter : int
|
||
|
Maximum number of gradient descent iterations.
|
||
|
|
||
|
n_iter_check : int, default=1
|
||
|
Number of iterations before evaluating the global error. If the error
|
||
|
is sufficiently low, we abort the optimization.
|
||
|
|
||
|
n_iter_without_progress : int, default=300
|
||
|
Maximum number of iterations without progress before we abort the
|
||
|
optimization.
|
||
|
|
||
|
momentum : float within (0.0, 1.0), default=0.8
|
||
|
The momentum generates a weight for previous gradients that decays
|
||
|
exponentially.
|
||
|
|
||
|
learning_rate : float, default=200.0
|
||
|
The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If
|
||
|
the learning rate is too high, the data may look like a 'ball' with any
|
||
|
point approximately equidistant from its nearest neighbours. If the
|
||
|
learning rate is too low, most points may look compressed in a dense
|
||
|
cloud with few outliers.
|
||
|
|
||
|
min_gain : float, default=0.01
|
||
|
Minimum individual gain for each parameter.
|
||
|
|
||
|
min_grad_norm : float, default=1e-7
|
||
|
If the gradient norm is below this threshold, the optimization will
|
||
|
be aborted.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Verbosity level.
|
||
|
|
||
|
args : sequence, default=None
|
||
|
Arguments to pass to objective function.
|
||
|
|
||
|
kwargs : dict, default=None
|
||
|
Keyword arguments to pass to objective function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : ndarray of shape (n_params,)
|
||
|
Optimum parameters.
|
||
|
|
||
|
error : float
|
||
|
Optimum.
|
||
|
|
||
|
i : int
|
||
|
Last iteration.
|
||
|
"""
|
||
|
if args is None:
|
||
|
args = []
|
||
|
if kwargs is None:
|
||
|
kwargs = {}
|
||
|
|
||
|
p = p0.copy().ravel()
|
||
|
update = np.zeros_like(p)
|
||
|
gains = np.ones_like(p)
|
||
|
error = np.finfo(float).max
|
||
|
best_error = np.finfo(float).max
|
||
|
best_iter = i = it
|
||
|
|
||
|
tic = time()
|
||
|
for i in range(it, n_iter):
|
||
|
check_convergence = (i + 1) % n_iter_check == 0
|
||
|
# only compute the error when needed
|
||
|
kwargs["compute_error"] = check_convergence or i == n_iter - 1
|
||
|
|
||
|
error, grad = objective(p, *args, **kwargs)
|
||
|
|
||
|
inc = update * grad < 0.0
|
||
|
dec = np.invert(inc)
|
||
|
gains[inc] += 0.2
|
||
|
gains[dec] *= 0.8
|
||
|
np.clip(gains, min_gain, np.inf, out=gains)
|
||
|
grad *= gains
|
||
|
update = momentum * update - learning_rate * grad
|
||
|
p += update
|
||
|
|
||
|
if check_convergence:
|
||
|
toc = time()
|
||
|
duration = toc - tic
|
||
|
tic = toc
|
||
|
grad_norm = linalg.norm(grad)
|
||
|
|
||
|
if verbose >= 2:
|
||
|
print(
|
||
|
"[t-SNE] Iteration %d: error = %.7f,"
|
||
|
" gradient norm = %.7f"
|
||
|
" (%s iterations in %0.3fs)"
|
||
|
% (i + 1, error, grad_norm, n_iter_check, duration)
|
||
|
)
|
||
|
|
||
|
if error < best_error:
|
||
|
best_error = error
|
||
|
best_iter = i
|
||
|
elif i - best_iter > n_iter_without_progress:
|
||
|
if verbose >= 2:
|
||
|
print(
|
||
|
"[t-SNE] Iteration %d: did not make any progress "
|
||
|
"during the last %d episodes. Finished."
|
||
|
% (i + 1, n_iter_without_progress)
|
||
|
)
|
||
|
break
|
||
|
if grad_norm <= min_grad_norm:
|
||
|
if verbose >= 2:
|
||
|
print(
|
||
|
"[t-SNE] Iteration %d: gradient norm %f. Finished."
|
||
|
% (i + 1, grad_norm)
|
||
|
)
|
||
|
break
|
||
|
|
||
|
return p, error, i
|
||
|
|
||
|
|
||
|
def trustworthiness(X, X_embedded, *, n_neighbors=5, metric="euclidean"):
|
||
|
r"""Indicate to what extent the local structure is retained.
|
||
|
|
||
|
The trustworthiness is within [0, 1]. It is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1}
|
||
|
\sum_{j \in \mathcal{N}_{i}^{k}} \max(0, (r(i, j) - k))
|
||
|
|
||
|
where for each sample i, :math:`\mathcal{N}_{i}^{k}` are its k nearest
|
||
|
neighbors in the output space, and every sample j is its :math:`r(i, j)`-th
|
||
|
nearest neighbor in the input space. In other words, any unexpected nearest
|
||
|
neighbors in the output space are penalised in proportion to their rank in
|
||
|
the input space.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
||
|
(n_samples, n_samples)
|
||
|
If the metric is 'precomputed' X must be a square distance
|
||
|
matrix. Otherwise it contains a sample per row.
|
||
|
|
||
|
X_embedded : {array-like, sparse matrix} of shape (n_samples, n_components)
|
||
|
Embedding of the training data in low-dimensional space.
|
||
|
|
||
|
n_neighbors : int, default=5
|
||
|
The number of neighbors that will be considered. Should be fewer than
|
||
|
`n_samples / 2` to ensure the trustworthiness to lies within [0, 1], as
|
||
|
mentioned in [1]_. An error will be raised otherwise.
|
||
|
|
||
|
metric : str or callable, default='euclidean'
|
||
|
Which metric to use for computing pairwise distances between samples
|
||
|
from the original input space. If metric is 'precomputed', X must be a
|
||
|
matrix of pairwise distances or squared distances. Otherwise, for a list
|
||
|
of available metrics, see the documentation of argument metric in
|
||
|
`sklearn.pairwise.pairwise_distances` and metrics listed in
|
||
|
`sklearn.metrics.pairwise.PAIRWISE_DISTANCE_FUNCTIONS`. Note that the
|
||
|
"cosine" metric uses :func:`~sklearn.metrics.pairwise.cosine_distances`.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
trustworthiness : float
|
||
|
Trustworthiness of the low-dimensional embedding.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Jarkko Venna and Samuel Kaski. 2001. Neighborhood
|
||
|
Preservation in Nonlinear Projection Methods: An Experimental Study.
|
||
|
In Proceedings of the International Conference on Artificial Neural Networks
|
||
|
(ICANN '01). Springer-Verlag, Berlin, Heidelberg, 485-491.
|
||
|
|
||
|
.. [2] Laurens van der Maaten. Learning a Parametric Embedding by Preserving
|
||
|
Local Structure. Proceedings of the Twelth International Conference on
|
||
|
Artificial Intelligence and Statistics, PMLR 5:384-391, 2009.
|
||
|
"""
|
||
|
n_samples = X.shape[0]
|
||
|
if n_neighbors >= n_samples / 2:
|
||
|
raise ValueError(
|
||
|
f"n_neighbors ({n_neighbors}) should be less than n_samples / 2"
|
||
|
f" ({n_samples / 2})"
|
||
|
)
|
||
|
dist_X = pairwise_distances(X, metric=metric)
|
||
|
if metric == "precomputed":
|
||
|
dist_X = dist_X.copy()
|
||
|
# we set the diagonal to np.inf to exclude the points themselves from
|
||
|
# their own neighborhood
|
||
|
np.fill_diagonal(dist_X, np.inf)
|
||
|
ind_X = np.argsort(dist_X, axis=1)
|
||
|
# `ind_X[i]` is the index of sorted distances between i and other samples
|
||
|
ind_X_embedded = (
|
||
|
NearestNeighbors(n_neighbors=n_neighbors)
|
||
|
.fit(X_embedded)
|
||
|
.kneighbors(return_distance=False)
|
||
|
)
|
||
|
|
||
|
# We build an inverted index of neighbors in the input space: For sample i,
|
||
|
# we define `inverted_index[i]` as the inverted index of sorted distances:
|
||
|
# inverted_index[i][ind_X[i]] = np.arange(1, n_sample + 1)
|
||
|
inverted_index = np.zeros((n_samples, n_samples), dtype=int)
|
||
|
ordered_indices = np.arange(n_samples + 1)
|
||
|
inverted_index[ordered_indices[:-1, np.newaxis], ind_X] = ordered_indices[1:]
|
||
|
ranks = (
|
||
|
inverted_index[ordered_indices[:-1, np.newaxis], ind_X_embedded] - n_neighbors
|
||
|
)
|
||
|
t = np.sum(ranks[ranks > 0])
|
||
|
t = 1.0 - t * (
|
||
|
2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))
|
||
|
)
|
||
|
return t
|
||
|
|
||
|
|
||
|
class TSNE(BaseEstimator):
|
||
|
"""T-distributed Stochastic Neighbor Embedding.
|
||
|
|
||
|
t-SNE [1] is a tool to visualize high-dimensional data. It converts
|
||
|
similarities between data points to joint probabilities and tries
|
||
|
to minimize the Kullback-Leibler divergence between the joint
|
||
|
probabilities of the low-dimensional embedding and the
|
||
|
high-dimensional data. t-SNE has a cost function that is not convex,
|
||
|
i.e. with different initializations we can get different results.
|
||
|
|
||
|
It is highly recommended to use another dimensionality reduction
|
||
|
method (e.g. PCA for dense data or TruncatedSVD for sparse data)
|
||
|
to reduce the number of dimensions to a reasonable amount (e.g. 50)
|
||
|
if the number of features is very high. This will suppress some
|
||
|
noise and speed up the computation of pairwise distances between
|
||
|
samples. For more tips see Laurens van der Maaten's FAQ [2].
|
||
|
|
||
|
Read more in the :ref:`User Guide <t_sne>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_components : int, default=2
|
||
|
Dimension of the embedded space.
|
||
|
|
||
|
perplexity : float, default=30.0
|
||
|
The perplexity is related to the number of nearest neighbors that
|
||
|
is used in other manifold learning algorithms. Larger datasets
|
||
|
usually require a larger perplexity. Consider selecting a value
|
||
|
between 5 and 50. Different values can result in significantly
|
||
|
different results. The perplexity must be less than the number
|
||
|
of samples.
|
||
|
|
||
|
early_exaggeration : float, default=12.0
|
||
|
Controls how tight natural clusters in the original space are in
|
||
|
the embedded space and how much space will be between them. For
|
||
|
larger values, the space between natural clusters will be larger
|
||
|
in the embedded space. Again, the choice of this parameter is not
|
||
|
very critical. If the cost function increases during initial
|
||
|
optimization, the early exaggeration factor or the learning rate
|
||
|
might be too high.
|
||
|
|
||
|
learning_rate : float or "auto", default="auto"
|
||
|
The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If
|
||
|
the learning rate is too high, the data may look like a 'ball' with any
|
||
|
point approximately equidistant from its nearest neighbours. If the
|
||
|
learning rate is too low, most points may look compressed in a dense
|
||
|
cloud with few outliers. If the cost function gets stuck in a bad local
|
||
|
minimum increasing the learning rate may help.
|
||
|
Note that many other t-SNE implementations (bhtsne, FIt-SNE, openTSNE,
|
||
|
etc.) use a definition of learning_rate that is 4 times smaller than
|
||
|
ours. So our learning_rate=200 corresponds to learning_rate=800 in
|
||
|
those other implementations. The 'auto' option sets the learning_rate
|
||
|
to `max(N / early_exaggeration / 4, 50)` where N is the sample size,
|
||
|
following [4] and [5].
|
||
|
|
||
|
.. versionchanged:: 1.2
|
||
|
The default value changed to `"auto"`.
|
||
|
|
||
|
n_iter : int, default=1000
|
||
|
Maximum number of iterations for the optimization. Should be at
|
||
|
least 250.
|
||
|
|
||
|
n_iter_without_progress : int, default=300
|
||
|
Maximum number of iterations without progress before we abort the
|
||
|
optimization, used after 250 initial iterations with early
|
||
|
exaggeration. Note that progress is only checked every 50 iterations so
|
||
|
this value is rounded to the next multiple of 50.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
parameter *n_iter_without_progress* to control stopping criteria.
|
||
|
|
||
|
min_grad_norm : float, default=1e-7
|
||
|
If the gradient norm is below this threshold, the optimization will
|
||
|
be stopped.
|
||
|
|
||
|
metric : str or callable, default='euclidean'
|
||
|
The metric to use when calculating distance between instances in a
|
||
|
feature array. If metric is a string, it must be one of the options
|
||
|
allowed by scipy.spatial.distance.pdist for its metric parameter, or
|
||
|
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
|
||
|
If metric is "precomputed", X is assumed to be a distance matrix.
|
||
|
Alternatively, if metric is a callable function, it is called on each
|
||
|
pair of instances (rows) and the resulting value recorded. The callable
|
||
|
should take two arrays from X as input and return a value indicating
|
||
|
the distance between them. The default is "euclidean" which is
|
||
|
interpreted as squared euclidean distance.
|
||
|
|
||
|
metric_params : dict, default=None
|
||
|
Additional keyword arguments for the metric function.
|
||
|
|
||
|
.. versionadded:: 1.1
|
||
|
|
||
|
init : {"random", "pca"} or ndarray of shape (n_samples, n_components), \
|
||
|
default="pca"
|
||
|
Initialization of embedding.
|
||
|
PCA initialization cannot be used with precomputed distances and is
|
||
|
usually more globally stable than random initialization.
|
||
|
|
||
|
.. versionchanged:: 1.2
|
||
|
The default value changed to `"pca"`.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Verbosity level.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Determines the random number generator. Pass an int for reproducible
|
||
|
results across multiple function calls. Note that different
|
||
|
initializations might result in different local minima of the cost
|
||
|
function. See :term:`Glossary <random_state>`.
|
||
|
|
||
|
method : {'barnes_hut', 'exact'}, default='barnes_hut'
|
||
|
By default the gradient calculation algorithm uses Barnes-Hut
|
||
|
approximation running in O(NlogN) time. method='exact'
|
||
|
will run on the slower, but exact, algorithm in O(N^2) time. The
|
||
|
exact algorithm should be used when nearest-neighbor errors need
|
||
|
to be better than 3%. However, the exact method cannot scale to
|
||
|
millions of examples.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
Approximate optimization *method* via the Barnes-Hut.
|
||
|
|
||
|
angle : float, default=0.5
|
||
|
Only used if method='barnes_hut'
|
||
|
This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
|
||
|
'angle' is the angular size (referred to as theta in [3]) of a distant
|
||
|
node as measured from a point. If this size is below 'angle' then it is
|
||
|
used as a summary node of all points contained within it.
|
||
|
This method is not very sensitive to changes in this parameter
|
||
|
in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
|
||
|
computation time and angle greater 0.8 has quickly increasing error.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
The number of parallel jobs to run for neighbors search. This parameter
|
||
|
has no impact when ``metric="precomputed"`` or
|
||
|
(``metric="euclidean"`` and ``method="exact"``).
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
.. versionadded:: 0.22
|
||
|
|
||
|
square_distances : True, default='deprecated'
|
||
|
This parameter has no effect since distance values are always squared
|
||
|
since 1.1.
|
||
|
|
||
|
.. deprecated:: 1.1
|
||
|
`square_distances` has no effect from 1.1 and will be removed in
|
||
|
1.3.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
embedding_ : array-like of shape (n_samples, n_components)
|
||
|
Stores the embedding vectors.
|
||
|
|
||
|
kl_divergence_ : float
|
||
|
Kullback-Leibler divergence after optimization.
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
learning_rate_ : float
|
||
|
Effective learning rate.
|
||
|
|
||
|
.. versionadded:: 1.2
|
||
|
|
||
|
n_iter_ : int
|
||
|
Number of iterations run.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
sklearn.decomposition.PCA : Principal component analysis that is a linear
|
||
|
dimensionality reduction method.
|
||
|
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using
|
||
|
kernels and PCA.
|
||
|
MDS : Manifold learning using multidimensional scaling.
|
||
|
Isomap : Manifold learning based on Isometric Mapping.
|
||
|
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding.
|
||
|
SpectralEmbedding : Spectral embedding for non-linear dimensionality.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
[1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data
|
||
|
Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008.
|
||
|
|
||
|
[2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding
|
||
|
https://lvdmaaten.github.io/tsne/
|
||
|
|
||
|
[3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms.
|
||
|
Journal of Machine Learning Research 15(Oct):3221-3245, 2014.
|
||
|
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
|
||
|
|
||
|
[4] Belkina, A. C., Ciccolella, C. O., Anno, R., Halpert, R., Spidlen, J.,
|
||
|
& Snyder-Cappione, J. E. (2019). Automated optimized parameters for
|
||
|
T-distributed stochastic neighbor embedding improve visualization
|
||
|
and analysis of large datasets. Nature Communications, 10(1), 1-12.
|
||
|
|
||
|
[5] Kobak, D., & Berens, P. (2019). The art of using t-SNE for single-cell
|
||
|
transcriptomics. Nature Communications, 10(1), 1-14.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.manifold import TSNE
|
||
|
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
|
||
|
>>> X_embedded = TSNE(n_components=2, learning_rate='auto',
|
||
|
... init='random', perplexity=3).fit_transform(X)
|
||
|
>>> X_embedded.shape
|
||
|
(4, 2)
|
||
|
"""
|
||
|
|
||
|
_parameter_constraints: dict = {
|
||
|
"n_components": [Interval(Integral, 1, None, closed="left")],
|
||
|
"perplexity": [Interval(Real, 0, None, closed="neither")],
|
||
|
"early_exaggeration": [Interval(Real, 1, None, closed="left")],
|
||
|
"learning_rate": [
|
||
|
StrOptions({"auto"}),
|
||
|
Interval(Real, 0, None, closed="neither"),
|
||
|
],
|
||
|
"n_iter": [Interval(Integral, 250, None, closed="left")],
|
||
|
"n_iter_without_progress": [Interval(Integral, -1, None, closed="left")],
|
||
|
"min_grad_norm": [Interval(Real, 0, None, closed="left")],
|
||
|
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
|
||
|
"metric_params": [dict, None],
|
||
|
"init": [
|
||
|
StrOptions({"pca", "random"}),
|
||
|
np.ndarray,
|
||
|
],
|
||
|
"verbose": ["verbose"],
|
||
|
"random_state": ["random_state"],
|
||
|
"method": [StrOptions({"barnes_hut", "exact"})],
|
||
|
"angle": [Interval(Real, 0, 1, closed="both")],
|
||
|
"n_jobs": [None, Integral],
|
||
|
"square_distances": ["boolean", Hidden(StrOptions({"deprecated"}))],
|
||
|
}
|
||
|
|
||
|
# Control the number of exploration iterations with early_exaggeration on
|
||
|
_EXPLORATION_N_ITER = 250
|
||
|
|
||
|
# Control the number of iterations between progress checks
|
||
|
_N_ITER_CHECK = 50
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
n_components=2,
|
||
|
*,
|
||
|
perplexity=30.0,
|
||
|
early_exaggeration=12.0,
|
||
|
learning_rate="auto",
|
||
|
n_iter=1000,
|
||
|
n_iter_without_progress=300,
|
||
|
min_grad_norm=1e-7,
|
||
|
metric="euclidean",
|
||
|
metric_params=None,
|
||
|
init="pca",
|
||
|
verbose=0,
|
||
|
random_state=None,
|
||
|
method="barnes_hut",
|
||
|
angle=0.5,
|
||
|
n_jobs=None,
|
||
|
square_distances="deprecated",
|
||
|
):
|
||
|
self.n_components = n_components
|
||
|
self.perplexity = perplexity
|
||
|
self.early_exaggeration = early_exaggeration
|
||
|
self.learning_rate = learning_rate
|
||
|
self.n_iter = n_iter
|
||
|
self.n_iter_without_progress = n_iter_without_progress
|
||
|
self.min_grad_norm = min_grad_norm
|
||
|
self.metric = metric
|
||
|
self.metric_params = metric_params
|
||
|
self.init = init
|
||
|
self.verbose = verbose
|
||
|
self.random_state = random_state
|
||
|
self.method = method
|
||
|
self.angle = angle
|
||
|
self.n_jobs = n_jobs
|
||
|
self.square_distances = square_distances
|
||
|
|
||
|
def _check_params_vs_input(self, X):
|
||
|
if self.perplexity >= X.shape[0]:
|
||
|
raise ValueError("perplexity must be less than n_samples")
|
||
|
|
||
|
def _fit(self, X, skip_num_points=0):
|
||
|
"""Private function to fit the model using X as training data."""
|
||
|
|
||
|
if isinstance(self.init, str) and self.init == "pca" and issparse(X):
|
||
|
raise TypeError(
|
||
|
"PCA initialization is currently not supported "
|
||
|
"with the sparse input matrix. Use "
|
||
|
'init="random" instead.'
|
||
|
)
|
||
|
if self.square_distances != "deprecated":
|
||
|
warnings.warn(
|
||
|
"The parameter `square_distances` has not effect and will be "
|
||
|
"removed in version 1.3.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if self.learning_rate == "auto":
|
||
|
# See issue #18018
|
||
|
self.learning_rate_ = X.shape[0] / self.early_exaggeration / 4
|
||
|
self.learning_rate_ = np.maximum(self.learning_rate_, 50)
|
||
|
else:
|
||
|
self.learning_rate_ = self.learning_rate
|
||
|
|
||
|
if self.method == "barnes_hut":
|
||
|
X = self._validate_data(
|
||
|
X,
|
||
|
accept_sparse=["csr"],
|
||
|
ensure_min_samples=2,
|
||
|
dtype=[np.float32, np.float64],
|
||
|
)
|
||
|
else:
|
||
|
X = self._validate_data(
|
||
|
X, accept_sparse=["csr", "csc", "coo"], dtype=[np.float32, np.float64]
|
||
|
)
|
||
|
if self.metric == "precomputed":
|
||
|
if isinstance(self.init, str) and self.init == "pca":
|
||
|
raise ValueError(
|
||
|
'The parameter init="pca" cannot be used with metric="precomputed".'
|
||
|
)
|
||
|
if X.shape[0] != X.shape[1]:
|
||
|
raise ValueError("X should be a square distance matrix")
|
||
|
|
||
|
check_non_negative(
|
||
|
X,
|
||
|
"TSNE.fit(). With metric='precomputed', X "
|
||
|
"should contain positive distances.",
|
||
|
)
|
||
|
|
||
|
if self.method == "exact" and issparse(X):
|
||
|
raise TypeError(
|
||
|
'TSNE with method="exact" does not accept sparse '
|
||
|
'precomputed distance matrix. Use method="barnes_hut" '
|
||
|
"or provide the dense distance matrix."
|
||
|
)
|
||
|
|
||
|
if self.method == "barnes_hut" and self.n_components > 3:
|
||
|
raise ValueError(
|
||
|
"'n_components' should be inferior to 4 for the "
|
||
|
"barnes_hut algorithm as it relies on "
|
||
|
"quad-tree or oct-tree."
|
||
|
)
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
|
||
|
n_samples = X.shape[0]
|
||
|
|
||
|
neighbors_nn = None
|
||
|
if self.method == "exact":
|
||
|
# Retrieve the distance matrix, either using the precomputed one or
|
||
|
# computing it.
|
||
|
if self.metric == "precomputed":
|
||
|
distances = X
|
||
|
else:
|
||
|
if self.verbose:
|
||
|
print("[t-SNE] Computing pairwise distances...")
|
||
|
|
||
|
if self.metric == "euclidean":
|
||
|
# Euclidean is squared here, rather than using **= 2,
|
||
|
# because euclidean_distances already calculates
|
||
|
# squared distances, and returns np.sqrt(dist) for
|
||
|
# squared=False.
|
||
|
# Also, Euclidean is slower for n_jobs>1, so don't set here
|
||
|
distances = pairwise_distances(X, metric=self.metric, squared=True)
|
||
|
else:
|
||
|
metric_params_ = self.metric_params or {}
|
||
|
distances = pairwise_distances(
|
||
|
X, metric=self.metric, n_jobs=self.n_jobs, **metric_params_
|
||
|
)
|
||
|
|
||
|
if np.any(distances < 0):
|
||
|
raise ValueError(
|
||
|
"All distances should be positive, the metric given is not correct"
|
||
|
)
|
||
|
|
||
|
if self.metric != "euclidean":
|
||
|
distances **= 2
|
||
|
|
||
|
# compute the joint probability distribution for the input space
|
||
|
P = _joint_probabilities(distances, self.perplexity, self.verbose)
|
||
|
assert np.all(np.isfinite(P)), "All probabilities should be finite"
|
||
|
assert np.all(P >= 0), "All probabilities should be non-negative"
|
||
|
assert np.all(
|
||
|
P <= 1
|
||
|
), "All probabilities should be less or then equal to one"
|
||
|
|
||
|
else:
|
||
|
# Compute the number of nearest neighbors to find.
|
||
|
# LvdM uses 3 * perplexity as the number of neighbors.
|
||
|
# In the event that we have very small # of points
|
||
|
# set the neighbors to n - 1.
|
||
|
n_neighbors = min(n_samples - 1, int(3.0 * self.perplexity + 1))
|
||
|
|
||
|
if self.verbose:
|
||
|
print("[t-SNE] Computing {} nearest neighbors...".format(n_neighbors))
|
||
|
|
||
|
# Find the nearest neighbors for every point
|
||
|
knn = NearestNeighbors(
|
||
|
algorithm="auto",
|
||
|
n_jobs=self.n_jobs,
|
||
|
n_neighbors=n_neighbors,
|
||
|
metric=self.metric,
|
||
|
metric_params=self.metric_params,
|
||
|
)
|
||
|
t0 = time()
|
||
|
knn.fit(X)
|
||
|
duration = time() - t0
|
||
|
if self.verbose:
|
||
|
print(
|
||
|
"[t-SNE] Indexed {} samples in {:.3f}s...".format(
|
||
|
n_samples, duration
|
||
|
)
|
||
|
)
|
||
|
|
||
|
t0 = time()
|
||
|
distances_nn = knn.kneighbors_graph(mode="distance")
|
||
|
duration = time() - t0
|
||
|
if self.verbose:
|
||
|
print(
|
||
|
"[t-SNE] Computed neighbors for {} samples in {:.3f}s...".format(
|
||
|
n_samples, duration
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# Free the memory used by the ball_tree
|
||
|
del knn
|
||
|
|
||
|
# knn return the euclidean distance but we need it squared
|
||
|
# to be consistent with the 'exact' method. Note that the
|
||
|
# the method was derived using the euclidean method as in the
|
||
|
# input space. Not sure of the implication of using a different
|
||
|
# metric.
|
||
|
distances_nn.data **= 2
|
||
|
|
||
|
# compute the joint probability distribution for the input space
|
||
|
P = _joint_probabilities_nn(distances_nn, self.perplexity, self.verbose)
|
||
|
|
||
|
if isinstance(self.init, np.ndarray):
|
||
|
X_embedded = self.init
|
||
|
elif self.init == "pca":
|
||
|
pca = PCA(
|
||
|
n_components=self.n_components,
|
||
|
svd_solver="randomized",
|
||
|
random_state=random_state,
|
||
|
)
|
||
|
# Always output a numpy array, no matter what is configured globally
|
||
|
pca.set_output(transform="default")
|
||
|
X_embedded = pca.fit_transform(X).astype(np.float32, copy=False)
|
||
|
# PCA is rescaled so that PC1 has standard deviation 1e-4 which is
|
||
|
# the default value for random initialization. See issue #18018.
|
||
|
X_embedded = X_embedded / np.std(X_embedded[:, 0]) * 1e-4
|
||
|
elif self.init == "random":
|
||
|
# The embedding is initialized with iid samples from Gaussians with
|
||
|
# standard deviation 1e-4.
|
||
|
X_embedded = 1e-4 * random_state.standard_normal(
|
||
|
size=(n_samples, self.n_components)
|
||
|
).astype(np.float32)
|
||
|
|
||
|
# Degrees of freedom of the Student's t-distribution. The suggestion
|
||
|
# degrees_of_freedom = n_components - 1 comes from
|
||
|
# "Learning a Parametric Embedding by Preserving Local Structure"
|
||
|
# Laurens van der Maaten, 2009.
|
||
|
degrees_of_freedom = max(self.n_components - 1, 1)
|
||
|
|
||
|
return self._tsne(
|
||
|
P,
|
||
|
degrees_of_freedom,
|
||
|
n_samples,
|
||
|
X_embedded=X_embedded,
|
||
|
neighbors=neighbors_nn,
|
||
|
skip_num_points=skip_num_points,
|
||
|
)
|
||
|
|
||
|
def _tsne(
|
||
|
self,
|
||
|
P,
|
||
|
degrees_of_freedom,
|
||
|
n_samples,
|
||
|
X_embedded,
|
||
|
neighbors=None,
|
||
|
skip_num_points=0,
|
||
|
):
|
||
|
"""Runs t-SNE."""
|
||
|
# t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P
|
||
|
# and the Student's t-distributions Q. The optimization algorithm that
|
||
|
# we use is batch gradient descent with two stages:
|
||
|
# * initial optimization with early exaggeration and momentum at 0.5
|
||
|
# * final optimization with momentum at 0.8
|
||
|
params = X_embedded.ravel()
|
||
|
|
||
|
opt_args = {
|
||
|
"it": 0,
|
||
|
"n_iter_check": self._N_ITER_CHECK,
|
||
|
"min_grad_norm": self.min_grad_norm,
|
||
|
"learning_rate": self.learning_rate_,
|
||
|
"verbose": self.verbose,
|
||
|
"kwargs": dict(skip_num_points=skip_num_points),
|
||
|
"args": [P, degrees_of_freedom, n_samples, self.n_components],
|
||
|
"n_iter_without_progress": self._EXPLORATION_N_ITER,
|
||
|
"n_iter": self._EXPLORATION_N_ITER,
|
||
|
"momentum": 0.5,
|
||
|
}
|
||
|
if self.method == "barnes_hut":
|
||
|
obj_func = _kl_divergence_bh
|
||
|
opt_args["kwargs"]["angle"] = self.angle
|
||
|
# Repeat verbose argument for _kl_divergence_bh
|
||
|
opt_args["kwargs"]["verbose"] = self.verbose
|
||
|
# Get the number of threads for gradient computation here to
|
||
|
# avoid recomputing it at each iteration.
|
||
|
opt_args["kwargs"]["num_threads"] = _openmp_effective_n_threads()
|
||
|
else:
|
||
|
obj_func = _kl_divergence
|
||
|
|
||
|
# Learning schedule (part 1): do 250 iteration with lower momentum but
|
||
|
# higher learning rate controlled via the early exaggeration parameter
|
||
|
P *= self.early_exaggeration
|
||
|
params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args)
|
||
|
if self.verbose:
|
||
|
print(
|
||
|
"[t-SNE] KL divergence after %d iterations with early exaggeration: %f"
|
||
|
% (it + 1, kl_divergence)
|
||
|
)
|
||
|
|
||
|
# Learning schedule (part 2): disable early exaggeration and finish
|
||
|
# optimization with a higher momentum at 0.8
|
||
|
P /= self.early_exaggeration
|
||
|
remaining = self.n_iter - self._EXPLORATION_N_ITER
|
||
|
if it < self._EXPLORATION_N_ITER or remaining > 0:
|
||
|
opt_args["n_iter"] = self.n_iter
|
||
|
opt_args["it"] = it + 1
|
||
|
opt_args["momentum"] = 0.8
|
||
|
opt_args["n_iter_without_progress"] = self.n_iter_without_progress
|
||
|
params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args)
|
||
|
|
||
|
# Save the final number of iterations
|
||
|
self.n_iter_ = it
|
||
|
|
||
|
if self.verbose:
|
||
|
print(
|
||
|
"[t-SNE] KL divergence after %d iterations: %f"
|
||
|
% (it + 1, kl_divergence)
|
||
|
)
|
||
|
|
||
|
X_embedded = params.reshape(n_samples, self.n_components)
|
||
|
self.kl_divergence_ = kl_divergence
|
||
|
|
||
|
return X_embedded
|
||
|
|
||
|
def fit_transform(self, X, y=None):
|
||
|
"""Fit X into an embedded space and return that transformed output.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
||
|
(n_samples, n_samples)
|
||
|
If the metric is 'precomputed' X must be a square distance
|
||
|
matrix. Otherwise it contains a sample per row. If the method
|
||
|
is 'exact', X may be a sparse matrix of type 'csr', 'csc'
|
||
|
or 'coo'. If the method is 'barnes_hut' and the metric is
|
||
|
'precomputed', X may be a precomputed sparse graph.
|
||
|
|
||
|
y : None
|
||
|
Ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_new : ndarray of shape (n_samples, n_components)
|
||
|
Embedding of the training data in low-dimensional space.
|
||
|
"""
|
||
|
self._validate_params()
|
||
|
self._check_params_vs_input(X)
|
||
|
embedding = self._fit(X)
|
||
|
self.embedding_ = embedding
|
||
|
return self.embedding_
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit X into an embedded space.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
||
|
(n_samples, n_samples)
|
||
|
If the metric is 'precomputed' X must be a square distance
|
||
|
matrix. Otherwise it contains a sample per row. If the method
|
||
|
is 'exact', X may be a sparse matrix of type 'csr', 'csc'
|
||
|
or 'coo'. If the method is 'barnes_hut' and the metric is
|
||
|
'precomputed', X may be a precomputed sparse graph.
|
||
|
|
||
|
y : None
|
||
|
Ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_new : array of shape (n_samples, n_components)
|
||
|
Embedding of the training data in low-dimensional space.
|
||
|
"""
|
||
|
self._validate_params()
|
||
|
self.fit_transform(X)
|
||
|
return self
|
||
|
|
||
|
def _more_tags(self):
|
||
|
return {"pairwise": self.metric == "precomputed"}
|