133 lines
4.6 KiB
Python
133 lines
4.6 KiB
Python
|
import numpy as np
|
||
|
from scipy import sparse as sp
|
||
|
from scipy import stats
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.svm._bounds import l1_min_c
|
||
|
from sklearn.svm import LinearSVC
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
from sklearn.svm._newrand import set_seed_wrap, bounded_rand_int_wrap
|
||
|
|
||
|
|
||
|
dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]]
|
||
|
sparse_X = sp.csr_matrix(dense_X)
|
||
|
|
||
|
Y1 = [0, 1, 1, 1]
|
||
|
Y2 = [2, 1, 0, 0]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("loss", ["squared_hinge", "log"])
|
||
|
@pytest.mark.parametrize("X_label", ["sparse", "dense"])
|
||
|
@pytest.mark.parametrize("Y_label", ["two-classes", "multi-class"])
|
||
|
@pytest.mark.parametrize("intercept_label", ["no-intercept", "fit-intercept"])
|
||
|
def test_l1_min_c(loss, X_label, Y_label, intercept_label):
|
||
|
Xs = {"sparse": sparse_X, "dense": dense_X}
|
||
|
Ys = {"two-classes": Y1, "multi-class": Y2}
|
||
|
intercepts = {
|
||
|
"no-intercept": {"fit_intercept": False},
|
||
|
"fit-intercept": {"fit_intercept": True, "intercept_scaling": 10},
|
||
|
}
|
||
|
|
||
|
X = Xs[X_label]
|
||
|
Y = Ys[Y_label]
|
||
|
intercept_params = intercepts[intercept_label]
|
||
|
check_l1_min_c(X, Y, loss, **intercept_params)
|
||
|
|
||
|
|
||
|
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=1.0):
|
||
|
min_c = l1_min_c(
|
||
|
X,
|
||
|
y,
|
||
|
loss=loss,
|
||
|
fit_intercept=fit_intercept,
|
||
|
intercept_scaling=intercept_scaling,
|
||
|
)
|
||
|
|
||
|
clf = {
|
||
|
"log": LogisticRegression(penalty="l1", solver="liblinear"),
|
||
|
"squared_hinge": LinearSVC(loss="squared_hinge", penalty="l1", dual=False),
|
||
|
}[loss]
|
||
|
|
||
|
clf.fit_intercept = fit_intercept
|
||
|
clf.intercept_scaling = intercept_scaling
|
||
|
|
||
|
clf.C = min_c
|
||
|
clf.fit(X, y)
|
||
|
assert (np.asarray(clf.coef_) == 0).all()
|
||
|
assert (np.asarray(clf.intercept_) == 0).all()
|
||
|
|
||
|
clf.C = min_c * 1.01
|
||
|
clf.fit(X, y)
|
||
|
assert (np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()
|
||
|
|
||
|
|
||
|
def test_ill_posed_min_c():
|
||
|
X = [[0, 0], [0, 0]]
|
||
|
y = [0, 1]
|
||
|
with pytest.raises(ValueError):
|
||
|
l1_min_c(X, y)
|
||
|
|
||
|
|
||
|
_MAX_UNSIGNED_INT = 4294967295
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("seed, val", [(None, 81), (0, 54), (_MAX_UNSIGNED_INT, 9)])
|
||
|
def test_newrand_set_seed(seed, val):
|
||
|
"""Test that `set_seed` produces deterministic results"""
|
||
|
if seed is not None:
|
||
|
set_seed_wrap(seed)
|
||
|
x = bounded_rand_int_wrap(100)
|
||
|
assert x == val, f"Expected {val} but got {x} instead"
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("seed", [-1, _MAX_UNSIGNED_INT + 1])
|
||
|
def test_newrand_set_seed_overflow(seed):
|
||
|
"""Test that `set_seed_wrap` is defined for unsigned 32bits ints"""
|
||
|
with pytest.raises(OverflowError):
|
||
|
set_seed_wrap(seed)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("range_, n_pts", [(_MAX_UNSIGNED_INT, 10000), (100, 25)])
|
||
|
def test_newrand_bounded_rand_int(range_, n_pts):
|
||
|
"""Test that `bounded_rand_int` follows a uniform distribution"""
|
||
|
n_iter = 100
|
||
|
ks_pvals = []
|
||
|
uniform_dist = stats.uniform(loc=0, scale=range_)
|
||
|
# perform multiple samplings to make chance of outlier sampling negligible
|
||
|
for _ in range(n_iter):
|
||
|
# Deterministic random sampling
|
||
|
sample = [bounded_rand_int_wrap(range_) for _ in range(n_pts)]
|
||
|
res = stats.kstest(sample, uniform_dist.cdf)
|
||
|
ks_pvals.append(res.pvalue)
|
||
|
# Null hypothesis = samples come from an uniform distribution.
|
||
|
# Under the null hypothesis, p-values should be uniformly distributed
|
||
|
# and not concentrated on low values
|
||
|
# (this may seem counter-intuitive but is backed by multiple refs)
|
||
|
# So we can do two checks:
|
||
|
|
||
|
# (1) check uniformity of p-values
|
||
|
uniform_p_vals_dist = stats.uniform(loc=0, scale=1)
|
||
|
res_pvals = stats.kstest(ks_pvals, uniform_p_vals_dist.cdf)
|
||
|
assert res_pvals.pvalue > 0.05, (
|
||
|
"Null hypothesis rejected: generated random numbers are not uniform."
|
||
|
" Details: the (meta) p-value of the test of uniform distribution"
|
||
|
f" of p-values is {res_pvals.pvalue} which is not > 0.05"
|
||
|
)
|
||
|
|
||
|
# (2) (safety belt) check that 90% of p-values are above 0.05
|
||
|
min_10pct_pval = np.percentile(ks_pvals, q=10)
|
||
|
# lower 10th quantile pvalue <= 0.05 means that the test rejects the
|
||
|
# null hypothesis that the sample came from the uniform distribution
|
||
|
assert min_10pct_pval > 0.05, (
|
||
|
"Null hypothesis rejected: generated random numbers are not uniform. "
|
||
|
f"Details: lower 10th quantile p-value of {min_10pct_pval} not > 0.05."
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("range_", [-1, _MAX_UNSIGNED_INT + 1])
|
||
|
def test_newrand_bounded_rand_int_limits(range_):
|
||
|
"""Test that `bounded_rand_int_wrap` is defined for unsigned 32bits ints"""
|
||
|
with pytest.raises(OverflowError):
|
||
|
bounded_rand_int_wrap(range_)
|