Inzynierka/Lib/site-packages/sklearn/tree/tests/test_export.py

513 lines
17 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""
Testing for export functions of decision trees (sklearn.tree.export).
"""
from re import finditer, search
from textwrap import dedent
from numpy.random import RandomState
import pytest
from sklearn.base import is_classifier
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.tree import export_graphviz, plot_tree, export_text
from io import StringIO
from sklearn.exceptions import NotFittedError
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]]
w = [1, 1, 1, 0.5, 0.5, 0.5]
y_degraded = [1, 1, 1, 1, 1, 1]
def test_graphviz_toy():
# Check correctness of export_graphviz
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="gini", random_state=2
)
clf.fit(X, y)
# Test export code
contents1 = export_graphviz(clf, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test with feature_names
contents1 = export_graphviz(
clf, feature_names=["feature0", "feature1"], out_file=None
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test with class_names
contents1 = export_graphviz(clf, class_names=["yes", "no"], out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]\\nclass = yes"] ;\n'
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n'
'class = yes"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n'
'class = no"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test plot_options
contents1 = export_graphviz(
clf,
filled=True,
impurity=False,
proportion=True,
special_characters=True,
rounded=True,
out_file=None,
fontname="sans",
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled, rounded", color="black", '
'fontname="sans"] ;\n'
'edge [fontname="sans"] ;\n'
"0 [label=<x<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>"
'value = [0.5, 0.5]>, fillcolor="#ffffff"] ;\n'
"1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, "
'fillcolor="#e58139"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
"2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, "
'fillcolor="#399de5"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
"}"
)
assert contents1 == contents2
# Test max_depth
contents1 = export_graphviz(clf, max_depth=0, class_names=True, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n'
'value = [3, 3]\\nclass = y[0]"] ;\n'
'1 [label="(...)"] ;\n'
"0 -> 1 ;\n"
'2 [label="(...)"] ;\n'
"0 -> 2 ;\n"
"}"
)
assert contents1 == contents2
# Test max_depth with plot_options
contents1 = export_graphviz(
clf, max_depth=0, filled=True, out_file=None, node_ids=True
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="node #0\\nx[0] <= 0.0\\ngini = 0.5\\n'
'samples = 6\\nvalue = [3, 3]", fillcolor="#ffffff"] ;\n'
'1 [label="(...)", fillcolor="#C0C0C0"] ;\n'
"0 -> 1 ;\n"
'2 [label="(...)", fillcolor="#C0C0C0"] ;\n'
"0 -> 2 ;\n"
"}"
)
assert contents1 == contents2
# Test multi-output with weighted samples
clf = DecisionTreeClassifier(
max_depth=2, min_samples_split=2, criterion="gini", random_state=2
)
clf = clf.fit(X, y2, sample_weight=w)
contents1 = export_graphviz(clf, filled=True, impurity=False, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="x[0] <= 0.0\\nsamples = 6\\n'
"value = [[3.0, 1.5, 0.0]\\n"
'[3.0, 1.0, 0.5]]", fillcolor="#ffffff"] ;\n'
'1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n'
'[3, 0, 0]]", fillcolor="#e58139"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=45, "
'headlabel="True"] ;\n'
'2 [label="x[0] <= 1.5\\nsamples = 3\\n'
"value = [[0.0, 1.5, 0.0]\\n"
'[0.0, 1.0, 0.5]]", fillcolor="#f1bd97"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=-45, "
'headlabel="False"] ;\n'
'3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n'
'[0, 1, 0]]", fillcolor="#e58139"] ;\n'
"2 -> 3 ;\n"
'4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n'
'[0.0, 0.0, 0.5]]", fillcolor="#e58139"] ;\n'
"2 -> 4 ;\n"
"}"
)
assert contents1 == contents2
# Test regression output with plot_options
clf = DecisionTreeRegressor(
max_depth=3, min_samples_split=2, criterion="squared_error", random_state=2
)
clf.fit(X, y)
contents1 = export_graphviz(
clf,
filled=True,
leaves_parallel=True,
out_file=None,
rotate=True,
rounded=True,
fontname="sans",
)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled, rounded", color="black", '
'fontname="sans"] ;\n'
"graph [ranksep=equally, splines=polyline] ;\n"
'edge [fontname="sans"] ;\n'
"rankdir=LR ;\n"
'0 [label="x[0] <= 0.0\\nsquared_error = 1.0\\nsamples = 6\\n'
'value = 0.0", fillcolor="#f2c09c"] ;\n'
'1 [label="squared_error = 0.0\\nsamples = 3\\'
'nvalue = -1.0", '
'fillcolor="#ffffff"] ;\n'
"0 -> 1 [labeldistance=2.5, labelangle=-45, "
'headlabel="True"] ;\n'
'2 [label="squared_error = 0.0\\nsamples = 3\\nvalue = 1.0", '
'fillcolor="#e58139"] ;\n'
"0 -> 2 [labeldistance=2.5, labelangle=45, "
'headlabel="False"] ;\n'
"{rank=same ; 0} ;\n"
"{rank=same ; 1; 2} ;\n"
"}"
)
assert contents1 == contents2
# Test classifier with degraded learning set
clf = DecisionTreeClassifier(max_depth=3)
clf.fit(X, y_degraded)
contents1 = export_graphviz(clf, filled=True, out_file=None)
contents2 = (
"digraph Tree {\n"
'node [shape=box, style="filled", color="black", '
'fontname="helvetica"] ;\n'
'edge [fontname="helvetica"] ;\n'
'0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", '
'fillcolor="#ffffff"] ;\n'
"}"
)
def test_graphviz_errors():
# Check for errors of export_graphviz
clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2)
# Check not-fitted decision tree error
out = StringIO()
with pytest.raises(NotFittedError):
export_graphviz(clf, out)
clf.fit(X, y)
# Check if it errors when length of feature_names
# mismatches with number of features
message = "Length of feature_names, 1 does not match number of features, 2"
with pytest.raises(ValueError, match=message):
export_graphviz(clf, None, feature_names=["a"])
message = "Length of feature_names, 3 does not match number of features, 2"
with pytest.raises(ValueError, match=message):
export_graphviz(clf, None, feature_names=["a", "b", "c"])
# Check error when argument is not an estimator
message = "is not an estimator instance"
with pytest.raises(TypeError, match=message):
export_graphviz(clf.fit(X, y).tree_)
# Check class_names error
out = StringIO()
with pytest.raises(IndexError):
export_graphviz(clf, out, class_names=[])
# Check precision error
out = StringIO()
with pytest.raises(ValueError, match="should be greater or equal"):
export_graphviz(clf, out, precision=-1)
with pytest.raises(ValueError, match="should be an integer"):
export_graphviz(clf, out, precision="1")
def test_friedman_mse_in_graphviz():
clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
clf.fit(X, y)
dot_data = StringIO()
export_graphviz(clf, out_file=dot_data)
clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
clf.fit(X, y)
for estimator in clf.estimators_:
export_graphviz(estimator[0], out_file=dot_data)
for finding in finditer(r"\[.*?samples.*?\]", dot_data.getvalue()):
assert "friedman_mse" in finding.group()
def test_precision():
rng_reg = RandomState(2)
rng_clf = RandomState(8)
for X, y, clf in zip(
(rng_reg.random_sample((5, 2)), rng_clf.random_sample((1000, 4))),
(rng_reg.random_sample((5,)), rng_clf.randint(2, size=(1000,))),
(
DecisionTreeRegressor(
criterion="friedman_mse", random_state=0, max_depth=1
),
DecisionTreeClassifier(max_depth=1, random_state=0),
),
):
clf.fit(X, y)
for precision in (4, 3):
dot_data = export_graphviz(
clf, out_file=None, precision=precision, proportion=True
)
# With the current random state, the impurity and the threshold
# will have the number of precision set in the export_graphviz
# function. We will check the number of precision with a strict
# equality. The value reported will have only 2 precision and
# therefore, only a less equal comparison will be done.
# check value
for finding in finditer(r"value = \d+\.\d+", dot_data):
assert len(search(r"\.\d+", finding.group()).group()) <= precision + 1
# check impurity
if is_classifier(clf):
pattern = r"gini = \d+\.\d+"
else:
pattern = r"friedman_mse = \d+\.\d+"
# check impurity
for finding in finditer(pattern, dot_data):
assert len(search(r"\.\d+", finding.group()).group()) == precision + 1
# check threshold
for finding in finditer(r"<= \d+\.\d+", dot_data):
assert len(search(r"\.\d+", finding.group()).group()) == precision + 1
def test_export_text_errors():
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
err_msg = "max_depth bust be >= 0, given -1"
with pytest.raises(ValueError, match=err_msg):
export_text(clf, max_depth=-1)
err_msg = "feature_names must contain 2 elements, got 1"
with pytest.raises(ValueError, match=err_msg):
export_text(clf, feature_names=["a"])
err_msg = "decimals must be >= 0, given -1"
with pytest.raises(ValueError, match=err_msg):
export_text(clf, decimals=-1)
err_msg = "spacing must be > 0, given 0"
with pytest.raises(ValueError, match=err_msg):
export_text(clf, spacing=0)
def test_export_text():
clf = DecisionTreeClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
expected_report = dedent(
"""
|--- feature_1 <= 0.00
| |--- class: -1
|--- feature_1 > 0.00
| |--- class: 1
"""
).lstrip()
assert export_text(clf) == expected_report
# testing that leaves at level 1 are not truncated
assert export_text(clf, max_depth=0) == expected_report
# testing that the rest of the tree is truncated
assert export_text(clf, max_depth=10) == expected_report
expected_report = dedent(
"""
|--- b <= 0.00
| |--- class: -1
|--- b > 0.00
| |--- class: 1
"""
).lstrip()
assert export_text(clf, feature_names=["a", "b"]) == expected_report
expected_report = dedent(
"""
|--- feature_1 <= 0.00
| |--- weights: [3.00, 0.00] class: -1
|--- feature_1 > 0.00
| |--- weights: [0.00, 3.00] class: 1
"""
).lstrip()
assert export_text(clf, show_weights=True) == expected_report
expected_report = dedent(
"""
|- feature_1 <= 0.00
| |- class: -1
|- feature_1 > 0.00
| |- class: 1
"""
).lstrip()
assert export_text(clf, spacing=1) == expected_report
X_l = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, 1]]
y_l = [-1, -1, -1, 1, 1, 1, 2]
clf = DecisionTreeClassifier(max_depth=4, random_state=0)
clf.fit(X_l, y_l)
expected_report = dedent(
"""
|--- feature_1 <= 0.00
| |--- class: -1
|--- feature_1 > 0.00
| |--- truncated branch of depth 2
"""
).lstrip()
assert export_text(clf, max_depth=0) == expected_report
X_mo = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y_mo = [[-1, -1], [-1, -1], [-1, -1], [1, 1], [1, 1], [1, 1]]
reg = DecisionTreeRegressor(max_depth=2, random_state=0)
reg.fit(X_mo, y_mo)
expected_report = dedent(
"""
|--- feature_1 <= 0.0
| |--- value: [-1.0, -1.0]
|--- feature_1 > 0.0
| |--- value: [1.0, 1.0]
"""
).lstrip()
assert export_text(reg, decimals=1) == expected_report
assert export_text(reg, decimals=1, show_weights=True) == expected_report
X_single = [[-2], [-1], [-1], [1], [1], [2]]
reg = DecisionTreeRegressor(max_depth=2, random_state=0)
reg.fit(X_single, y_mo)
expected_report = dedent(
"""
|--- first <= 0.0
| |--- value: [-1.0, -1.0]
|--- first > 0.0
| |--- value: [1.0, 1.0]
"""
).lstrip()
assert export_text(reg, decimals=1, feature_names=["first"]) == expected_report
assert (
export_text(reg, decimals=1, show_weights=True, feature_names=["first"])
== expected_report
)
def test_plot_tree_entropy(pyplot):
# mostly smoke tests
# Check correctness of export_graphviz for criterion = entropy
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="entropy", random_state=2
)
clf.fit(X, y)
# Test export code
feature_names = ["first feat", "sepal_width"]
nodes = plot_tree(clf, feature_names=feature_names)
assert len(nodes) == 3
assert (
nodes[0].get_text()
== "first feat <= 0.0\nentropy = 1.0\nsamples = 6\nvalue = [3, 3]"
)
assert nodes[1].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [3, 0]"
assert nodes[2].get_text() == "entropy = 0.0\nsamples = 3\nvalue = [0, 3]"
def test_plot_tree_gini(pyplot):
# mostly smoke tests
# Check correctness of export_graphviz for criterion = gini
clf = DecisionTreeClassifier(
max_depth=3, min_samples_split=2, criterion="gini", random_state=2
)
clf.fit(X, y)
# Test export code
feature_names = ["first feat", "sepal_width"]
nodes = plot_tree(clf, feature_names=feature_names)
assert len(nodes) == 3
assert (
nodes[0].get_text()
== "first feat <= 0.0\ngini = 0.5\nsamples = 6\nvalue = [3, 3]"
)
assert nodes[1].get_text() == "gini = 0.0\nsamples = 3\nvalue = [3, 0]"
assert nodes[2].get_text() == "gini = 0.0\nsamples = 3\nvalue = [0, 3]"
def test_not_fitted_tree(pyplot):
# Testing if not fitted tree throws the correct error
clf = DecisionTreeRegressor()
with pytest.raises(NotFittedError):
plot_tree(clf)