918 lines
30 KiB
Python
918 lines
30 KiB
Python
|
import pytest
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
from scipy import linalg
|
||
|
from numpy.testing import assert_array_almost_equal, assert_array_equal
|
||
|
from numpy.random import RandomState
|
||
|
|
||
|
from sklearn.datasets import make_classification
|
||
|
from sklearn.utils.sparsefuncs import (
|
||
|
mean_variance_axis,
|
||
|
incr_mean_variance_axis,
|
||
|
inplace_column_scale,
|
||
|
inplace_row_scale,
|
||
|
inplace_swap_row,
|
||
|
inplace_swap_column,
|
||
|
min_max_axis,
|
||
|
count_nonzero,
|
||
|
csc_median_axis_0,
|
||
|
)
|
||
|
from sklearn.utils.sparsefuncs_fast import (
|
||
|
assign_rows_csr,
|
||
|
inplace_csr_row_normalize_l1,
|
||
|
inplace_csr_row_normalize_l2,
|
||
|
csr_row_norms,
|
||
|
)
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
|
||
|
|
||
|
def test_mean_variance_axis0():
|
||
|
X, _ = make_classification(5, 4, random_state=0)
|
||
|
# Sparsify the array a little bit
|
||
|
X[0, 0] = 0
|
||
|
X[2, 1] = 0
|
||
|
X[4, 3] = 0
|
||
|
X_lil = sp.lil_matrix(X)
|
||
|
X_lil[1, 0] = 0
|
||
|
X[1, 0] = 0
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
mean_variance_axis(X_lil, axis=0)
|
||
|
|
||
|
X_csr = sp.csr_matrix(X_lil)
|
||
|
X_csc = sp.csc_matrix(X_lil)
|
||
|
|
||
|
expected_dtypes = [
|
||
|
(np.float32, np.float32),
|
||
|
(np.float64, np.float64),
|
||
|
(np.int32, np.float64),
|
||
|
(np.int64, np.float64),
|
||
|
]
|
||
|
|
||
|
for input_dtype, output_dtype in expected_dtypes:
|
||
|
X_test = X.astype(input_dtype)
|
||
|
for X_sparse in (X_csr, X_csc):
|
||
|
X_sparse = X_sparse.astype(input_dtype)
|
||
|
X_means, X_vars = mean_variance_axis(X_sparse, axis=0)
|
||
|
assert X_means.dtype == output_dtype
|
||
|
assert X_vars.dtype == output_dtype
|
||
|
assert_array_almost_equal(X_means, np.mean(X_test, axis=0))
|
||
|
assert_array_almost_equal(X_vars, np.var(X_test, axis=0))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
@pytest.mark.parametrize("sparse_constructor", [sp.csr_matrix, sp.csc_matrix])
|
||
|
def test_mean_variance_axis0_precision(dtype, sparse_constructor):
|
||
|
# Check that there's no big loss of precision when the real variance is
|
||
|
# exactly 0. (#19766)
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = np.full(fill_value=100.0, shape=(1000, 1), dtype=dtype)
|
||
|
# Add some missing records which should be ignored:
|
||
|
missing_indices = rng.choice(np.arange(X.shape[0]), 10, replace=False)
|
||
|
X[missing_indices, 0] = np.nan
|
||
|
X = sparse_constructor(X)
|
||
|
|
||
|
# Random positive weights:
|
||
|
sample_weight = rng.rand(X.shape[0]).astype(dtype)
|
||
|
|
||
|
_, var = mean_variance_axis(X, weights=sample_weight, axis=0)
|
||
|
|
||
|
assert var < np.finfo(dtype).eps
|
||
|
|
||
|
|
||
|
def test_mean_variance_axis1():
|
||
|
X, _ = make_classification(5, 4, random_state=0)
|
||
|
# Sparsify the array a little bit
|
||
|
X[0, 0] = 0
|
||
|
X[2, 1] = 0
|
||
|
X[4, 3] = 0
|
||
|
X_lil = sp.lil_matrix(X)
|
||
|
X_lil[1, 0] = 0
|
||
|
X[1, 0] = 0
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
mean_variance_axis(X_lil, axis=1)
|
||
|
|
||
|
X_csr = sp.csr_matrix(X_lil)
|
||
|
X_csc = sp.csc_matrix(X_lil)
|
||
|
|
||
|
expected_dtypes = [
|
||
|
(np.float32, np.float32),
|
||
|
(np.float64, np.float64),
|
||
|
(np.int32, np.float64),
|
||
|
(np.int64, np.float64),
|
||
|
]
|
||
|
|
||
|
for input_dtype, output_dtype in expected_dtypes:
|
||
|
X_test = X.astype(input_dtype)
|
||
|
for X_sparse in (X_csr, X_csc):
|
||
|
X_sparse = X_sparse.astype(input_dtype)
|
||
|
X_means, X_vars = mean_variance_axis(X_sparse, axis=0)
|
||
|
assert X_means.dtype == output_dtype
|
||
|
assert X_vars.dtype == output_dtype
|
||
|
assert_array_almost_equal(X_means, np.mean(X_test, axis=0))
|
||
|
assert_array_almost_equal(X_vars, np.var(X_test, axis=0))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
["Xw", "X", "weights"],
|
||
|
[
|
||
|
([[0, 0, 1], [0, 2, 3]], [[0, 0, 1], [0, 2, 3]], [1, 1, 1]),
|
||
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 0, 1], [0, 1, 1, 1]], [1, 2, 1]),
|
||
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1]], None),
|
||
|
(
|
||
|
[[0, np.nan, 2], [0, np.nan, np.nan]],
|
||
|
[[0, np.nan, 2], [0, np.nan, np.nan]],
|
||
|
[1.0, 1.0, 1.0],
|
||
|
),
|
||
|
(
|
||
|
[[0, 0], [1, np.nan], [2, 0], [0, 3], [np.nan, np.nan], [np.nan, 2]],
|
||
|
[
|
||
|
[0, 0, 0],
|
||
|
[1, 1, np.nan],
|
||
|
[2, 2, 0],
|
||
|
[0, 0, 3],
|
||
|
[np.nan, np.nan, np.nan],
|
||
|
[np.nan, np.nan, 2],
|
||
|
],
|
||
|
[2.0, 1.0],
|
||
|
),
|
||
|
(
|
||
|
[[1, 0, 1], [0, 3, 1]],
|
||
|
[[1, 0, 0, 0, 1], [0, 3, 3, 3, 1]],
|
||
|
np.array([1, 3, 1]),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("sparse_constructor", [sp.csc_matrix, sp.csr_matrix])
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_incr_mean_variance_axis_weighted_axis1(
|
||
|
Xw, X, weights, sparse_constructor, dtype
|
||
|
):
|
||
|
axis = 1
|
||
|
Xw_sparse = sparse_constructor(Xw).astype(dtype)
|
||
|
X_sparse = sparse_constructor(X).astype(dtype)
|
||
|
|
||
|
last_mean = np.zeros(np.shape(Xw)[0], dtype=dtype)
|
||
|
last_var = np.zeros_like(last_mean, dtype=dtype)
|
||
|
last_n = np.zeros_like(last_mean, dtype=np.int64)
|
||
|
means0, vars0, n_incr0 = incr_mean_variance_axis(
|
||
|
X=X_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=last_mean,
|
||
|
last_var=last_var,
|
||
|
last_n=last_n,
|
||
|
weights=None,
|
||
|
)
|
||
|
|
||
|
means_w0, vars_w0, n_incr_w0 = incr_mean_variance_axis(
|
||
|
X=Xw_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=last_mean,
|
||
|
last_var=last_var,
|
||
|
last_n=last_n,
|
||
|
weights=weights,
|
||
|
)
|
||
|
|
||
|
assert means_w0.dtype == dtype
|
||
|
assert vars_w0.dtype == dtype
|
||
|
assert n_incr_w0.dtype == dtype
|
||
|
|
||
|
means_simple, vars_simple = mean_variance_axis(X=X_sparse, axis=axis)
|
||
|
|
||
|
assert_array_almost_equal(means0, means_w0)
|
||
|
assert_array_almost_equal(means0, means_simple)
|
||
|
assert_array_almost_equal(vars0, vars_w0)
|
||
|
assert_array_almost_equal(vars0, vars_simple)
|
||
|
assert_array_almost_equal(n_incr0, n_incr_w0)
|
||
|
|
||
|
# check second round for incremental
|
||
|
means1, vars1, n_incr1 = incr_mean_variance_axis(
|
||
|
X=X_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=means0,
|
||
|
last_var=vars0,
|
||
|
last_n=n_incr0,
|
||
|
weights=None,
|
||
|
)
|
||
|
|
||
|
means_w1, vars_w1, n_incr_w1 = incr_mean_variance_axis(
|
||
|
X=Xw_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=means_w0,
|
||
|
last_var=vars_w0,
|
||
|
last_n=n_incr_w0,
|
||
|
weights=weights,
|
||
|
)
|
||
|
|
||
|
assert_array_almost_equal(means1, means_w1)
|
||
|
assert_array_almost_equal(vars1, vars_w1)
|
||
|
assert_array_almost_equal(n_incr1, n_incr_w1)
|
||
|
|
||
|
assert means_w1.dtype == dtype
|
||
|
assert vars_w1.dtype == dtype
|
||
|
assert n_incr_w1.dtype == dtype
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
["Xw", "X", "weights"],
|
||
|
[
|
||
|
([[0, 0, 1], [0, 2, 3]], [[0, 0, 1], [0, 2, 3]], [1, 1]),
|
||
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1], [0, 1, 1]], [1, 2]),
|
||
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1]], None),
|
||
|
(
|
||
|
[[0, np.nan, 2], [0, np.nan, np.nan]],
|
||
|
[[0, np.nan, 2], [0, np.nan, np.nan]],
|
||
|
[1.0, 1.0],
|
||
|
),
|
||
|
(
|
||
|
[[0, 0, 1, np.nan, 2, 0], [0, 3, np.nan, np.nan, np.nan, 2]],
|
||
|
[
|
||
|
[0, 0, 1, np.nan, 2, 0],
|
||
|
[0, 0, 1, np.nan, 2, 0],
|
||
|
[0, 3, np.nan, np.nan, np.nan, 2],
|
||
|
],
|
||
|
[2.0, 1.0],
|
||
|
),
|
||
|
(
|
||
|
[[1, 0, 1], [0, 0, 1]],
|
||
|
[[1, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]],
|
||
|
np.array([1, 3]),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("sparse_constructor", [sp.csc_matrix, sp.csr_matrix])
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_incr_mean_variance_axis_weighted_axis0(
|
||
|
Xw, X, weights, sparse_constructor, dtype
|
||
|
):
|
||
|
axis = 0
|
||
|
Xw_sparse = sparse_constructor(Xw).astype(dtype)
|
||
|
X_sparse = sparse_constructor(X).astype(dtype)
|
||
|
|
||
|
last_mean = np.zeros(np.size(Xw, 1), dtype=dtype)
|
||
|
last_var = np.zeros_like(last_mean)
|
||
|
last_n = np.zeros_like(last_mean, dtype=np.int64)
|
||
|
means0, vars0, n_incr0 = incr_mean_variance_axis(
|
||
|
X=X_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=last_mean,
|
||
|
last_var=last_var,
|
||
|
last_n=last_n,
|
||
|
weights=None,
|
||
|
)
|
||
|
|
||
|
means_w0, vars_w0, n_incr_w0 = incr_mean_variance_axis(
|
||
|
X=Xw_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=last_mean,
|
||
|
last_var=last_var,
|
||
|
last_n=last_n,
|
||
|
weights=weights,
|
||
|
)
|
||
|
|
||
|
assert means_w0.dtype == dtype
|
||
|
assert vars_w0.dtype == dtype
|
||
|
assert n_incr_w0.dtype == dtype
|
||
|
|
||
|
means_simple, vars_simple = mean_variance_axis(X=X_sparse, axis=axis)
|
||
|
|
||
|
assert_array_almost_equal(means0, means_w0)
|
||
|
assert_array_almost_equal(means0, means_simple)
|
||
|
assert_array_almost_equal(vars0, vars_w0)
|
||
|
assert_array_almost_equal(vars0, vars_simple)
|
||
|
assert_array_almost_equal(n_incr0, n_incr_w0)
|
||
|
|
||
|
# check second round for incremental
|
||
|
means1, vars1, n_incr1 = incr_mean_variance_axis(
|
||
|
X=X_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=means0,
|
||
|
last_var=vars0,
|
||
|
last_n=n_incr0,
|
||
|
weights=None,
|
||
|
)
|
||
|
|
||
|
means_w1, vars_w1, n_incr_w1 = incr_mean_variance_axis(
|
||
|
X=Xw_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=means_w0,
|
||
|
last_var=vars_w0,
|
||
|
last_n=n_incr_w0,
|
||
|
weights=weights,
|
||
|
)
|
||
|
|
||
|
assert_array_almost_equal(means1, means_w1)
|
||
|
assert_array_almost_equal(vars1, vars_w1)
|
||
|
assert_array_almost_equal(n_incr1, n_incr_w1)
|
||
|
|
||
|
assert means_w1.dtype == dtype
|
||
|
assert vars_w1.dtype == dtype
|
||
|
assert n_incr_w1.dtype == dtype
|
||
|
|
||
|
|
||
|
def test_incr_mean_variance_axis():
|
||
|
for axis in [0, 1]:
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_features = 50
|
||
|
n_samples = 10
|
||
|
if axis == 0:
|
||
|
data_chunks = [rng.randint(0, 2, size=n_features) for i in range(n_samples)]
|
||
|
else:
|
||
|
data_chunks = [rng.randint(0, 2, size=n_samples) for i in range(n_features)]
|
||
|
|
||
|
# default params for incr_mean_variance
|
||
|
last_mean = np.zeros(n_features) if axis == 0 else np.zeros(n_samples)
|
||
|
last_var = np.zeros_like(last_mean)
|
||
|
last_n = np.zeros_like(last_mean, dtype=np.int64)
|
||
|
|
||
|
# Test errors
|
||
|
X = np.array(data_chunks[0])
|
||
|
X = np.atleast_2d(X)
|
||
|
X = X.T if axis == 1 else X
|
||
|
X_lil = sp.lil_matrix(X)
|
||
|
X_csr = sp.csr_matrix(X_lil)
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
incr_mean_variance_axis(
|
||
|
X=axis, axis=last_mean, last_mean=last_var, last_var=last_n
|
||
|
)
|
||
|
with pytest.raises(TypeError):
|
||
|
incr_mean_variance_axis(
|
||
|
X_lil, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
|
||
|
)
|
||
|
|
||
|
# Test _incr_mean_and_var with a 1 row input
|
||
|
X_means, X_vars = mean_variance_axis(X_csr, axis)
|
||
|
X_means_incr, X_vars_incr, n_incr = incr_mean_variance_axis(
|
||
|
X_csr, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
|
||
|
)
|
||
|
assert_array_almost_equal(X_means, X_means_incr)
|
||
|
assert_array_almost_equal(X_vars, X_vars_incr)
|
||
|
# X.shape[axis] picks # samples
|
||
|
assert_array_equal(X.shape[axis], n_incr)
|
||
|
|
||
|
X_csc = sp.csc_matrix(X_lil)
|
||
|
X_means, X_vars = mean_variance_axis(X_csc, axis)
|
||
|
assert_array_almost_equal(X_means, X_means_incr)
|
||
|
assert_array_almost_equal(X_vars, X_vars_incr)
|
||
|
assert_array_equal(X.shape[axis], n_incr)
|
||
|
|
||
|
# Test _incremental_mean_and_var with whole data
|
||
|
X = np.vstack(data_chunks)
|
||
|
X = X.T if axis == 1 else X
|
||
|
X_lil = sp.lil_matrix(X)
|
||
|
X_csr = sp.csr_matrix(X_lil)
|
||
|
X_csc = sp.csc_matrix(X_lil)
|
||
|
|
||
|
expected_dtypes = [
|
||
|
(np.float32, np.float32),
|
||
|
(np.float64, np.float64),
|
||
|
(np.int32, np.float64),
|
||
|
(np.int64, np.float64),
|
||
|
]
|
||
|
|
||
|
for input_dtype, output_dtype in expected_dtypes:
|
||
|
for X_sparse in (X_csr, X_csc):
|
||
|
X_sparse = X_sparse.astype(input_dtype)
|
||
|
last_mean = last_mean.astype(output_dtype)
|
||
|
last_var = last_var.astype(output_dtype)
|
||
|
X_means, X_vars = mean_variance_axis(X_sparse, axis)
|
||
|
X_means_incr, X_vars_incr, n_incr = incr_mean_variance_axis(
|
||
|
X_sparse,
|
||
|
axis=axis,
|
||
|
last_mean=last_mean,
|
||
|
last_var=last_var,
|
||
|
last_n=last_n,
|
||
|
)
|
||
|
assert X_means_incr.dtype == output_dtype
|
||
|
assert X_vars_incr.dtype == output_dtype
|
||
|
assert_array_almost_equal(X_means, X_means_incr)
|
||
|
assert_array_almost_equal(X_vars, X_vars_incr)
|
||
|
assert_array_equal(X.shape[axis], n_incr)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("sparse_constructor", [sp.csc_matrix, sp.csr_matrix])
|
||
|
def test_incr_mean_variance_axis_dim_mismatch(sparse_constructor):
|
||
|
"""Check that we raise proper error when axis=1 and the dimension mismatch.
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/pull/18655
|
||
|
"""
|
||
|
n_samples, n_features = 60, 4
|
||
|
rng = np.random.RandomState(42)
|
||
|
X = sparse_constructor(rng.rand(n_samples, n_features))
|
||
|
|
||
|
last_mean = np.zeros(n_features)
|
||
|
last_var = np.zeros_like(last_mean)
|
||
|
last_n = np.zeros(last_mean.shape, dtype=np.int64)
|
||
|
|
||
|
kwargs = dict(last_mean=last_mean, last_var=last_var, last_n=last_n)
|
||
|
mean0, var0, _ = incr_mean_variance_axis(X, axis=0, **kwargs)
|
||
|
assert_allclose(np.mean(X.toarray(), axis=0), mean0)
|
||
|
assert_allclose(np.var(X.toarray(), axis=0), var0)
|
||
|
|
||
|
# test ValueError if axis=1 and last_mean.size == n_features
|
||
|
with pytest.raises(ValueError):
|
||
|
incr_mean_variance_axis(X, axis=1, **kwargs)
|
||
|
|
||
|
# test inconsistent shapes of last_mean, last_var, last_n
|
||
|
kwargs = dict(last_mean=last_mean[:-1], last_var=last_var, last_n=last_n)
|
||
|
with pytest.raises(ValueError):
|
||
|
incr_mean_variance_axis(X, axis=0, **kwargs)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X1, X2",
|
||
|
[
|
||
|
(
|
||
|
sp.random(5, 2, density=0.8, format="csr", random_state=0),
|
||
|
sp.random(13, 2, density=0.8, format="csr", random_state=0),
|
||
|
),
|
||
|
(
|
||
|
sp.random(5, 2, density=0.8, format="csr", random_state=0),
|
||
|
sp.hstack(
|
||
|
[
|
||
|
sp.csr_matrix(np.full((13, 1), fill_value=np.nan)),
|
||
|
sp.random(13, 1, density=0.8, random_state=42),
|
||
|
],
|
||
|
format="csr",
|
||
|
),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_incr_mean_variance_axis_equivalence_mean_variance(X1, X2):
|
||
|
# non-regression test for:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/16448
|
||
|
# check that computing the incremental mean and variance is equivalent to
|
||
|
# computing the mean and variance on the stacked dataset.
|
||
|
axis = 0
|
||
|
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1])
|
||
|
last_n = np.zeros(X1.shape[1], dtype=np.int64)
|
||
|
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
|
||
|
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
|
||
|
)
|
||
|
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
|
||
|
X2, axis=axis, last_mean=updated_mean, last_var=updated_var, last_n=updated_n
|
||
|
)
|
||
|
X = sp.vstack([X1, X2])
|
||
|
assert_allclose(updated_mean, np.nanmean(X.A, axis=axis))
|
||
|
assert_allclose(updated_var, np.nanvar(X.A, axis=axis))
|
||
|
assert_allclose(updated_n, np.count_nonzero(~np.isnan(X.A), axis=0))
|
||
|
|
||
|
|
||
|
def test_incr_mean_variance_no_new_n():
|
||
|
# check the behaviour when we update the variance with an empty matrix
|
||
|
axis = 0
|
||
|
X1 = sp.random(5, 1, density=0.8, random_state=0).tocsr()
|
||
|
X2 = sp.random(0, 1, density=0.8, random_state=0).tocsr()
|
||
|
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1])
|
||
|
last_n = np.zeros(X1.shape[1], dtype=np.int64)
|
||
|
last_mean, last_var, last_n = incr_mean_variance_axis(
|
||
|
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
|
||
|
)
|
||
|
# update statistic with a column which should ignored
|
||
|
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
|
||
|
X2, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
|
||
|
)
|
||
|
assert_allclose(updated_mean, last_mean)
|
||
|
assert_allclose(updated_var, last_var)
|
||
|
assert_allclose(updated_n, last_n)
|
||
|
|
||
|
|
||
|
def test_incr_mean_variance_n_float():
|
||
|
# check the behaviour when last_n is just a number
|
||
|
axis = 0
|
||
|
X = sp.random(5, 2, density=0.8, random_state=0).tocsr()
|
||
|
last_mean, last_var = np.zeros(X.shape[1]), np.zeros(X.shape[1])
|
||
|
last_n = 0
|
||
|
_, _, new_n = incr_mean_variance_axis(
|
||
|
X, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
|
||
|
)
|
||
|
assert_allclose(new_n, np.full(X.shape[1], X.shape[0]))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("axis", [0, 1])
|
||
|
@pytest.mark.parametrize("sparse_constructor", [sp.csc_matrix, sp.csr_matrix])
|
||
|
def test_incr_mean_variance_axis_ignore_nan(axis, sparse_constructor):
|
||
|
old_means = np.array([535.0, 535.0, 535.0, 535.0])
|
||
|
old_variances = np.array([4225.0, 4225.0, 4225.0, 4225.0])
|
||
|
old_sample_count = np.array([2, 2, 2, 2], dtype=np.int64)
|
||
|
|
||
|
X = sparse_constructor(
|
||
|
np.array([[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]])
|
||
|
)
|
||
|
|
||
|
X_nan = sparse_constructor(
|
||
|
np.array(
|
||
|
[
|
||
|
[170, np.nan, 170, 170],
|
||
|
[np.nan, 170, 430, 430],
|
||
|
[430, 430, np.nan, 300],
|
||
|
[300, 300, 300, np.nan],
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# we avoid creating specific data for axis 0 and 1: translating the data is
|
||
|
# enough.
|
||
|
if axis:
|
||
|
X = X.T
|
||
|
X_nan = X_nan.T
|
||
|
|
||
|
# take a copy of the old statistics since they are modified in place.
|
||
|
X_means, X_vars, X_sample_count = incr_mean_variance_axis(
|
||
|
X,
|
||
|
axis=axis,
|
||
|
last_mean=old_means.copy(),
|
||
|
last_var=old_variances.copy(),
|
||
|
last_n=old_sample_count.copy(),
|
||
|
)
|
||
|
X_nan_means, X_nan_vars, X_nan_sample_count = incr_mean_variance_axis(
|
||
|
X_nan,
|
||
|
axis=axis,
|
||
|
last_mean=old_means.copy(),
|
||
|
last_var=old_variances.copy(),
|
||
|
last_n=old_sample_count.copy(),
|
||
|
)
|
||
|
|
||
|
assert_allclose(X_nan_means, X_means)
|
||
|
assert_allclose(X_nan_vars, X_vars)
|
||
|
assert_allclose(X_nan_sample_count, X_sample_count)
|
||
|
|
||
|
|
||
|
def test_mean_variance_illegal_axis():
|
||
|
X, _ = make_classification(5, 4, random_state=0)
|
||
|
# Sparsify the array a little bit
|
||
|
X[0, 0] = 0
|
||
|
X[2, 1] = 0
|
||
|
X[4, 3] = 0
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
with pytest.raises(ValueError):
|
||
|
mean_variance_axis(X_csr, axis=-3)
|
||
|
with pytest.raises(ValueError):
|
||
|
mean_variance_axis(X_csr, axis=2)
|
||
|
with pytest.raises(ValueError):
|
||
|
mean_variance_axis(X_csr, axis=-1)
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
incr_mean_variance_axis(
|
||
|
X_csr, axis=-3, last_mean=None, last_var=None, last_n=None
|
||
|
)
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
incr_mean_variance_axis(
|
||
|
X_csr, axis=2, last_mean=None, last_var=None, last_n=None
|
||
|
)
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
incr_mean_variance_axis(
|
||
|
X_csr, axis=-1, last_mean=None, last_var=None, last_n=None
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_densify_rows():
|
||
|
for dtype in (np.float32, np.float64):
|
||
|
X = sp.csr_matrix(
|
||
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=dtype
|
||
|
)
|
||
|
X_rows = np.array([0, 2, 3], dtype=np.intp)
|
||
|
out = np.ones((6, X.shape[1]), dtype=dtype)
|
||
|
out_rows = np.array([1, 3, 4], dtype=np.intp)
|
||
|
|
||
|
expect = np.ones_like(out)
|
||
|
expect[out_rows] = X[X_rows, :].toarray()
|
||
|
|
||
|
assign_rows_csr(X, X_rows, out_rows, out)
|
||
|
assert_array_equal(out, expect)
|
||
|
|
||
|
|
||
|
def test_inplace_column_scale():
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = sp.rand(100, 200, 0.05)
|
||
|
Xr = X.tocsr()
|
||
|
Xc = X.tocsc()
|
||
|
XA = X.toarray()
|
||
|
scale = rng.rand(200)
|
||
|
XA *= scale
|
||
|
|
||
|
inplace_column_scale(Xc, scale)
|
||
|
inplace_column_scale(Xr, scale)
|
||
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_column_scale(X.tolil(), scale)
|
||
|
|
||
|
X = X.astype(np.float32)
|
||
|
scale = scale.astype(np.float32)
|
||
|
Xr = X.tocsr()
|
||
|
Xc = X.tocsc()
|
||
|
XA = X.toarray()
|
||
|
XA *= scale
|
||
|
inplace_column_scale(Xc, scale)
|
||
|
inplace_column_scale(Xr, scale)
|
||
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_column_scale(X.tolil(), scale)
|
||
|
|
||
|
|
||
|
def test_inplace_row_scale():
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = sp.rand(100, 200, 0.05)
|
||
|
Xr = X.tocsr()
|
||
|
Xc = X.tocsc()
|
||
|
XA = X.toarray()
|
||
|
scale = rng.rand(100)
|
||
|
XA *= scale.reshape(-1, 1)
|
||
|
|
||
|
inplace_row_scale(Xc, scale)
|
||
|
inplace_row_scale(Xr, scale)
|
||
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_column_scale(X.tolil(), scale)
|
||
|
|
||
|
X = X.astype(np.float32)
|
||
|
scale = scale.astype(np.float32)
|
||
|
Xr = X.tocsr()
|
||
|
Xc = X.tocsc()
|
||
|
XA = X.toarray()
|
||
|
XA *= scale.reshape(-1, 1)
|
||
|
inplace_row_scale(Xc, scale)
|
||
|
inplace_row_scale(Xr, scale)
|
||
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xc.toarray())
|
||
|
assert_array_almost_equal(XA, Xr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_column_scale(X.tolil(), scale)
|
||
|
|
||
|
|
||
|
def test_inplace_swap_row():
|
||
|
X = np.array(
|
||
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
|
||
|
)
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
X_csc = sp.csc_matrix(X)
|
||
|
|
||
|
swap = linalg.get_blas_funcs(("swap",), (X,))
|
||
|
swap = swap[0]
|
||
|
X[0], X[-1] = swap(X[0], X[-1])
|
||
|
inplace_swap_row(X_csr, 0, -1)
|
||
|
inplace_swap_row(X_csc, 0, -1)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
|
||
|
X[2], X[3] = swap(X[2], X[3])
|
||
|
inplace_swap_row(X_csr, 2, 3)
|
||
|
inplace_swap_row(X_csc, 2, 3)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_swap_row(X_csr.tolil())
|
||
|
|
||
|
X = np.array(
|
||
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32
|
||
|
)
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
X_csc = sp.csc_matrix(X)
|
||
|
swap = linalg.get_blas_funcs(("swap",), (X,))
|
||
|
swap = swap[0]
|
||
|
X[0], X[-1] = swap(X[0], X[-1])
|
||
|
inplace_swap_row(X_csr, 0, -1)
|
||
|
inplace_swap_row(X_csc, 0, -1)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
X[2], X[3] = swap(X[2], X[3])
|
||
|
inplace_swap_row(X_csr, 2, 3)
|
||
|
inplace_swap_row(X_csc, 2, 3)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_swap_row(X_csr.tolil())
|
||
|
|
||
|
|
||
|
def test_inplace_swap_column():
|
||
|
X = np.array(
|
||
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
|
||
|
)
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
X_csc = sp.csc_matrix(X)
|
||
|
|
||
|
swap = linalg.get_blas_funcs(("swap",), (X,))
|
||
|
swap = swap[0]
|
||
|
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
|
||
|
inplace_swap_column(X_csr, 0, -1)
|
||
|
inplace_swap_column(X_csc, 0, -1)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
|
||
|
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
|
||
|
inplace_swap_column(X_csr, 0, 1)
|
||
|
inplace_swap_column(X_csc, 0, 1)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_swap_column(X_csr.tolil())
|
||
|
|
||
|
X = np.array(
|
||
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32
|
||
|
)
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
X_csc = sp.csc_matrix(X)
|
||
|
swap = linalg.get_blas_funcs(("swap",), (X,))
|
||
|
swap = swap[0]
|
||
|
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
|
||
|
inplace_swap_column(X_csr, 0, -1)
|
||
|
inplace_swap_column(X_csc, 0, -1)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
|
||
|
inplace_swap_column(X_csr, 0, 1)
|
||
|
inplace_swap_column(X_csc, 0, 1)
|
||
|
assert_array_equal(X_csr.toarray(), X_csc.toarray())
|
||
|
assert_array_equal(X, X_csc.toarray())
|
||
|
assert_array_equal(X, X_csr.toarray())
|
||
|
with pytest.raises(TypeError):
|
||
|
inplace_swap_column(X_csr.tolil())
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
@pytest.mark.parametrize("axis", [0, 1, None])
|
||
|
@pytest.mark.parametrize("sparse_format", [sp.csr_matrix, sp.csc_matrix])
|
||
|
@pytest.mark.parametrize(
|
||
|
"missing_values, min_func, max_func, ignore_nan",
|
||
|
[(0, np.min, np.max, False), (np.nan, np.nanmin, np.nanmax, True)],
|
||
|
)
|
||
|
@pytest.mark.parametrize("large_indices", [True, False])
|
||
|
def test_min_max(
|
||
|
dtype,
|
||
|
axis,
|
||
|
sparse_format,
|
||
|
missing_values,
|
||
|
min_func,
|
||
|
max_func,
|
||
|
ignore_nan,
|
||
|
large_indices,
|
||
|
):
|
||
|
X = np.array(
|
||
|
[
|
||
|
[0, 3, 0],
|
||
|
[2, -1, missing_values],
|
||
|
[0, 0, 0],
|
||
|
[9, missing_values, 7],
|
||
|
[4, 0, 5],
|
||
|
],
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
X_sparse = sparse_format(X)
|
||
|
if large_indices:
|
||
|
X_sparse.indices = X_sparse.indices.astype("int64")
|
||
|
X_sparse.indptr = X_sparse.indptr.astype("int64")
|
||
|
|
||
|
mins_sparse, maxs_sparse = min_max_axis(X_sparse, axis=axis, ignore_nan=ignore_nan)
|
||
|
assert_array_equal(mins_sparse, min_func(X, axis=axis))
|
||
|
assert_array_equal(maxs_sparse, max_func(X, axis=axis))
|
||
|
|
||
|
|
||
|
def test_min_max_axis_errors():
|
||
|
X = np.array(
|
||
|
[[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
|
||
|
)
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
X_csc = sp.csc_matrix(X)
|
||
|
with pytest.raises(TypeError):
|
||
|
min_max_axis(X_csr.tolil(), axis=0)
|
||
|
with pytest.raises(ValueError):
|
||
|
min_max_axis(X_csr, axis=2)
|
||
|
with pytest.raises(ValueError):
|
||
|
min_max_axis(X_csc, axis=-3)
|
||
|
|
||
|
|
||
|
def test_count_nonzero():
|
||
|
X = np.array(
|
||
|
[[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
|
||
|
)
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
X_csc = sp.csc_matrix(X)
|
||
|
X_nonzero = X != 0
|
||
|
sample_weight = [0.5, 0.2, 0.3, 0.1, 0.1]
|
||
|
X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None]
|
||
|
|
||
|
for axis in [0, 1, -1, -2, None]:
|
||
|
assert_array_almost_equal(
|
||
|
count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis)
|
||
|
)
|
||
|
assert_array_almost_equal(
|
||
|
count_nonzero(X_csr, axis=axis, sample_weight=sample_weight),
|
||
|
X_nonzero_weighted.sum(axis=axis),
|
||
|
)
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
count_nonzero(X_csc)
|
||
|
with pytest.raises(ValueError):
|
||
|
count_nonzero(X_csr, axis=2)
|
||
|
|
||
|
assert count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr, axis=1).dtype
|
||
|
assert (
|
||
|
count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype
|
||
|
== count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype
|
||
|
)
|
||
|
|
||
|
# Check dtypes with large sparse matrices too
|
||
|
# XXX: test fails on 32bit (Windows/Linux)
|
||
|
try:
|
||
|
X_csr.indices = X_csr.indices.astype(np.int64)
|
||
|
X_csr.indptr = X_csr.indptr.astype(np.int64)
|
||
|
assert count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr, axis=1).dtype
|
||
|
assert (
|
||
|
count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype
|
||
|
== count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype
|
||
|
)
|
||
|
except TypeError as e:
|
||
|
assert "according to the rule 'safe'" in e.args[0] and np.intp().nbytes < 8, e
|
||
|
|
||
|
|
||
|
def test_csc_row_median():
|
||
|
# Test csc_row_median actually calculates the median.
|
||
|
|
||
|
# Test that it gives the same output when X is dense.
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.rand(100, 50)
|
||
|
dense_median = np.median(X, axis=0)
|
||
|
csc = sp.csc_matrix(X)
|
||
|
sparse_median = csc_median_axis_0(csc)
|
||
|
assert_array_equal(sparse_median, dense_median)
|
||
|
|
||
|
# Test that it gives the same output when X is sparse
|
||
|
X = rng.rand(51, 100)
|
||
|
X[X < 0.7] = 0.0
|
||
|
ind = rng.randint(0, 50, 10)
|
||
|
X[ind] = -X[ind]
|
||
|
csc = sp.csc_matrix(X)
|
||
|
dense_median = np.median(X, axis=0)
|
||
|
sparse_median = csc_median_axis_0(csc)
|
||
|
assert_array_equal(sparse_median, dense_median)
|
||
|
|
||
|
# Test for toy data.
|
||
|
X = [[0, -2], [-1, -1], [1, 0], [2, 1]]
|
||
|
csc = sp.csc_matrix(X)
|
||
|
assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5]))
|
||
|
X = [[0, -2], [-1, -5], [1, -3]]
|
||
|
csc = sp.csc_matrix(X)
|
||
|
assert_array_equal(csc_median_axis_0(csc), np.array([0.0, -3]))
|
||
|
|
||
|
# Test that it raises an Error for non-csc matrices.
|
||
|
with pytest.raises(TypeError):
|
||
|
csc_median_axis_0(sp.csr_matrix(X))
|
||
|
|
||
|
|
||
|
def test_inplace_normalize():
|
||
|
ones = np.ones((10, 1))
|
||
|
rs = RandomState(10)
|
||
|
|
||
|
for inplace_csr_row_normalize in (
|
||
|
inplace_csr_row_normalize_l1,
|
||
|
inplace_csr_row_normalize_l2,
|
||
|
):
|
||
|
for dtype in (np.float64, np.float32):
|
||
|
X = rs.randn(10, 5).astype(dtype)
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
for index_dtype in [np.int32, np.int64]:
|
||
|
# csr_matrix will use int32 indices by default,
|
||
|
# up-casting those to int64 when necessary
|
||
|
if index_dtype is np.int64:
|
||
|
X_csr.indptr = X_csr.indptr.astype(index_dtype)
|
||
|
X_csr.indices = X_csr.indices.astype(index_dtype)
|
||
|
assert X_csr.indices.dtype == index_dtype
|
||
|
assert X_csr.indptr.dtype == index_dtype
|
||
|
inplace_csr_row_normalize(X_csr)
|
||
|
assert X_csr.dtype == dtype
|
||
|
if inplace_csr_row_normalize is inplace_csr_row_normalize_l2:
|
||
|
X_csr.data **= 2
|
||
|
assert_array_almost_equal(np.abs(X_csr).sum(axis=1), ones)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_csr_row_norms(dtype):
|
||
|
# checks that csr_row_norms returns the same output as
|
||
|
# scipy.sparse.linalg.norm, and that the dype is the same as X.dtype.
|
||
|
X = sp.random(100, 10, format="csr", dtype=dtype, random_state=42)
|
||
|
|
||
|
scipy_norms = sp.linalg.norm(X, axis=1) ** 2
|
||
|
norms = csr_row_norms(X)
|
||
|
|
||
|
assert norms.dtype == dtype
|
||
|
rtol = 1e-6 if dtype == np.float32 else 1e-7
|
||
|
assert_allclose(norms, scipy_norms, rtol=rtol)
|