1885 lines
55 KiB
Cython
1885 lines
55 KiB
Cython
|
cimport cython
|
||
|
from cython cimport (
|
||
|
Py_ssize_t,
|
||
|
floating,
|
||
|
)
|
||
|
from libc.stdlib cimport (
|
||
|
free,
|
||
|
malloc,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
cimport numpy as cnp
|
||
|
from numpy cimport (
|
||
|
complex64_t,
|
||
|
complex128_t,
|
||
|
float32_t,
|
||
|
float64_t,
|
||
|
int8_t,
|
||
|
int64_t,
|
||
|
intp_t,
|
||
|
ndarray,
|
||
|
uint8_t,
|
||
|
uint64_t,
|
||
|
)
|
||
|
from numpy.math cimport NAN
|
||
|
|
||
|
cnp.import_array()
|
||
|
|
||
|
from pandas._libs cimport util
|
||
|
from pandas._libs.algos cimport (
|
||
|
get_rank_nan_fill_val,
|
||
|
kth_smallest_c,
|
||
|
)
|
||
|
|
||
|
from pandas._libs.algos import (
|
||
|
groupsort_indexer,
|
||
|
rank_1d,
|
||
|
take_2d_axis1_bool_bool,
|
||
|
take_2d_axis1_float64_float64,
|
||
|
)
|
||
|
|
||
|
from pandas._libs.dtypes cimport (
|
||
|
numeric_object_t,
|
||
|
numeric_t,
|
||
|
)
|
||
|
from pandas._libs.missing cimport checknull
|
||
|
|
||
|
|
||
|
cdef int64_t NPY_NAT = util.get_nat()
|
||
|
_int64_max = np.iinfo(np.int64).max
|
||
|
|
||
|
cdef float64_t NaN = <float64_t>np.NaN
|
||
|
|
||
|
cdef enum InterpolationEnumType:
|
||
|
INTERPOLATION_LINEAR,
|
||
|
INTERPOLATION_LOWER,
|
||
|
INTERPOLATION_HIGHER,
|
||
|
INTERPOLATION_NEAREST,
|
||
|
INTERPOLATION_MIDPOINT
|
||
|
|
||
|
|
||
|
cdef float64_t median_linear_mask(float64_t* a, int n, uint8_t* mask) nogil:
|
||
|
cdef:
|
||
|
int i, j, na_count = 0
|
||
|
float64_t* tmp
|
||
|
float64_t result
|
||
|
|
||
|
if n == 0:
|
||
|
return NaN
|
||
|
|
||
|
# count NAs
|
||
|
for i in range(n):
|
||
|
if mask[i]:
|
||
|
na_count += 1
|
||
|
|
||
|
if na_count:
|
||
|
if na_count == n:
|
||
|
return NaN
|
||
|
|
||
|
tmp = <float64_t*>malloc((n - na_count) * sizeof(float64_t))
|
||
|
|
||
|
j = 0
|
||
|
for i in range(n):
|
||
|
if not mask[i]:
|
||
|
tmp[j] = a[i]
|
||
|
j += 1
|
||
|
|
||
|
a = tmp
|
||
|
n -= na_count
|
||
|
|
||
|
result = calc_median_linear(a, n, na_count)
|
||
|
|
||
|
if na_count:
|
||
|
free(a)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
cdef float64_t median_linear(float64_t* a, int n) nogil:
|
||
|
cdef:
|
||
|
int i, j, na_count = 0
|
||
|
float64_t* tmp
|
||
|
float64_t result
|
||
|
|
||
|
if n == 0:
|
||
|
return NaN
|
||
|
|
||
|
# count NAs
|
||
|
for i in range(n):
|
||
|
if a[i] != a[i]:
|
||
|
na_count += 1
|
||
|
|
||
|
if na_count:
|
||
|
if na_count == n:
|
||
|
return NaN
|
||
|
|
||
|
tmp = <float64_t*>malloc((n - na_count) * sizeof(float64_t))
|
||
|
|
||
|
j = 0
|
||
|
for i in range(n):
|
||
|
if a[i] == a[i]:
|
||
|
tmp[j] = a[i]
|
||
|
j += 1
|
||
|
|
||
|
a = tmp
|
||
|
n -= na_count
|
||
|
|
||
|
result = calc_median_linear(a, n, na_count)
|
||
|
|
||
|
if na_count:
|
||
|
free(a)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
cdef float64_t calc_median_linear(float64_t* a, int n, int na_count) nogil:
|
||
|
cdef:
|
||
|
float64_t result
|
||
|
|
||
|
if n % 2:
|
||
|
result = kth_smallest_c(a, n // 2, n)
|
||
|
else:
|
||
|
result = (kth_smallest_c(a, n // 2, n) +
|
||
|
kth_smallest_c(a, n // 2 - 1, n)) / 2
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
ctypedef fused int64float_t:
|
||
|
int64_t
|
||
|
uint64_t
|
||
|
float32_t
|
||
|
float64_t
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_median_float64(
|
||
|
ndarray[float64_t, ndim=2] out,
|
||
|
ndarray[int64_t] counts,
|
||
|
ndarray[float64_t, ndim=2] values,
|
||
|
ndarray[intp_t] labels,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
const uint8_t[:, :] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Only aggregates on axis=0
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, ngroups, size
|
||
|
ndarray[intp_t] _counts
|
||
|
ndarray[float64_t, ndim=2] data
|
||
|
ndarray[uint8_t, ndim=2] data_mask
|
||
|
ndarray[intp_t] indexer
|
||
|
float64_t* ptr
|
||
|
uint8_t* ptr_mask
|
||
|
float64_t result
|
||
|
bint uses_mask = mask is not None
|
||
|
|
||
|
assert min_count == -1, "'min_count' only used in sum and prod"
|
||
|
|
||
|
ngroups = len(counts)
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
indexer, _counts = groupsort_indexer(labels, ngroups)
|
||
|
counts[:] = _counts[1:]
|
||
|
|
||
|
data = np.empty((K, N), dtype=np.float64)
|
||
|
ptr = <float64_t*>cnp.PyArray_DATA(data)
|
||
|
|
||
|
take_2d_axis1_float64_float64(values.T, indexer, out=data)
|
||
|
|
||
|
if uses_mask:
|
||
|
data_mask = np.empty((K, N), dtype=np.uint8)
|
||
|
ptr_mask = <uint8_t *>cnp.PyArray_DATA(data_mask)
|
||
|
|
||
|
take_2d_axis1_bool_bool(mask.T, indexer, out=data_mask, fill_value=1)
|
||
|
|
||
|
with nogil:
|
||
|
|
||
|
for i in range(K):
|
||
|
# exclude NA group
|
||
|
ptr += _counts[0]
|
||
|
ptr_mask += _counts[0]
|
||
|
|
||
|
for j in range(ngroups):
|
||
|
size = _counts[j + 1]
|
||
|
result = median_linear_mask(ptr, size, ptr_mask)
|
||
|
out[j, i] = result
|
||
|
|
||
|
if result != result:
|
||
|
result_mask[j, i] = 1
|
||
|
ptr += size
|
||
|
ptr_mask += size
|
||
|
|
||
|
else:
|
||
|
with nogil:
|
||
|
for i in range(K):
|
||
|
# exclude NA group
|
||
|
ptr += _counts[0]
|
||
|
for j in range(ngroups):
|
||
|
size = _counts[j + 1]
|
||
|
out[j, i] = median_linear(ptr, size)
|
||
|
ptr += size
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_cumprod(
|
||
|
int64float_t[:, ::1] out,
|
||
|
ndarray[int64float_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
int ngroups,
|
||
|
bint is_datetimelike,
|
||
|
bint skipna=True,
|
||
|
const uint8_t[:, :] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Cumulative product of columns of `values`, in row groups `labels`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[np.float64, ndim=2]
|
||
|
Array to store cumprod in.
|
||
|
values : np.ndarray[np.float64, ndim=2]
|
||
|
Values to take cumprod of.
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Labels to group by.
|
||
|
ngroups : int
|
||
|
Number of groups, larger than all entries of `labels`.
|
||
|
is_datetimelike : bool
|
||
|
Always false, `values` is never datetime-like.
|
||
|
skipna : bool
|
||
|
If true, ignore nans in `values`.
|
||
|
mask: np.ndarray[uint8], optional
|
||
|
Mask of values
|
||
|
result_mask: np.ndarray[int8], optional
|
||
|
Mask of out array
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter, rather than returning an object.
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K
|
||
|
int64float_t val, na_val
|
||
|
int64float_t[:, ::1] accum
|
||
|
intp_t lab
|
||
|
uint8_t[:, ::1] accum_mask
|
||
|
bint isna_entry, isna_prev = False
|
||
|
bint uses_mask = mask is not None
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
accum = np.ones((ngroups, K), dtype=(<object>values).dtype)
|
||
|
na_val = _get_na_val(<int64float_t>0, is_datetimelike)
|
||
|
accum_mask = np.zeros((ngroups, K), dtype="uint8")
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, False)
|
||
|
|
||
|
if not isna_entry:
|
||
|
isna_prev = accum_mask[lab, j]
|
||
|
if isna_prev:
|
||
|
out[i, j] = na_val
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = True
|
||
|
|
||
|
else:
|
||
|
accum[lab, j] *= val
|
||
|
out[i, j] = accum[lab, j]
|
||
|
|
||
|
else:
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = True
|
||
|
out[i, j] = 0
|
||
|
else:
|
||
|
out[i, j] = na_val
|
||
|
|
||
|
if not skipna:
|
||
|
accum[lab, j] = na_val
|
||
|
accum_mask[lab, j] = True
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_cumsum(
|
||
|
int64float_t[:, ::1] out,
|
||
|
ndarray[int64float_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
int ngroups,
|
||
|
bint is_datetimelike,
|
||
|
bint skipna=True,
|
||
|
const uint8_t[:, :] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Cumulative sum of columns of `values`, in row groups `labels`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[ndim=2]
|
||
|
Array to store cumsum in.
|
||
|
values : np.ndarray[ndim=2]
|
||
|
Values to take cumsum of.
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Labels to group by.
|
||
|
ngroups : int
|
||
|
Number of groups, larger than all entries of `labels`.
|
||
|
is_datetimelike : bool
|
||
|
True if `values` contains datetime-like entries.
|
||
|
skipna : bool
|
||
|
If true, ignore nans in `values`.
|
||
|
mask: np.ndarray[uint8], optional
|
||
|
Mask of values
|
||
|
result_mask: np.ndarray[int8], optional
|
||
|
Mask of out array
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter, rather than returning an object.
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K
|
||
|
int64float_t val, y, t, na_val
|
||
|
int64float_t[:, ::1] accum, compensation
|
||
|
uint8_t[:, ::1] accum_mask
|
||
|
intp_t lab
|
||
|
bint isna_entry, isna_prev = False
|
||
|
bint uses_mask = mask is not None
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
if uses_mask:
|
||
|
accum_mask = np.zeros((ngroups, K), dtype="uint8")
|
||
|
|
||
|
accum = np.zeros((ngroups, K), dtype=np.asarray(values).dtype)
|
||
|
compensation = np.zeros((ngroups, K), dtype=np.asarray(values).dtype)
|
||
|
|
||
|
na_val = _get_na_val(<int64float_t>0, is_datetimelike)
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not skipna:
|
||
|
if uses_mask:
|
||
|
isna_prev = accum_mask[lab, j]
|
||
|
else:
|
||
|
isna_prev = _treat_as_na(accum[lab, j], is_datetimelike)
|
||
|
|
||
|
if isna_prev:
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = True
|
||
|
# Be deterministic, out was initialized as empty
|
||
|
out[i, j] = 0
|
||
|
else:
|
||
|
out[i, j] = na_val
|
||
|
continue
|
||
|
|
||
|
if isna_entry:
|
||
|
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = True
|
||
|
# Be deterministic, out was initialized as empty
|
||
|
out[i, j] = 0
|
||
|
else:
|
||
|
out[i, j] = na_val
|
||
|
|
||
|
if not skipna:
|
||
|
if uses_mask:
|
||
|
accum_mask[lab, j] = True
|
||
|
else:
|
||
|
accum[lab, j] = na_val
|
||
|
|
||
|
else:
|
||
|
# For floats, use Kahan summation to reduce floating-point
|
||
|
# error (https://en.wikipedia.org/wiki/Kahan_summation_algorithm)
|
||
|
if int64float_t == float32_t or int64float_t == float64_t:
|
||
|
y = val - compensation[lab, j]
|
||
|
t = accum[lab, j] + y
|
||
|
compensation[lab, j] = t - accum[lab, j] - y
|
||
|
else:
|
||
|
t = val + accum[lab, j]
|
||
|
|
||
|
accum[lab, j] = t
|
||
|
out[i, j] = t
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_shift_indexer(
|
||
|
int64_t[::1] out,
|
||
|
const intp_t[::1] labels,
|
||
|
int ngroups,
|
||
|
int periods,
|
||
|
) -> None:
|
||
|
cdef:
|
||
|
Py_ssize_t N, i, ii, lab
|
||
|
int offset = 0, sign
|
||
|
int64_t idxer, idxer_slot
|
||
|
int64_t[::1] label_seen = np.zeros(ngroups, dtype=np.int64)
|
||
|
int64_t[:, ::1] label_indexer
|
||
|
|
||
|
N, = (<object>labels).shape
|
||
|
|
||
|
if periods < 0:
|
||
|
periods = -periods
|
||
|
offset = N - 1
|
||
|
sign = -1
|
||
|
elif periods > 0:
|
||
|
offset = 0
|
||
|
sign = 1
|
||
|
|
||
|
if periods == 0:
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
out[i] = i
|
||
|
else:
|
||
|
# array of each previous indexer seen
|
||
|
label_indexer = np.zeros((ngroups, periods), dtype=np.int64)
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
# reverse iterator if shifting backwards
|
||
|
ii = offset + sign * i
|
||
|
lab = labels[ii]
|
||
|
|
||
|
# Skip null keys
|
||
|
if lab == -1:
|
||
|
out[ii] = -1
|
||
|
continue
|
||
|
|
||
|
label_seen[lab] += 1
|
||
|
|
||
|
idxer_slot = label_seen[lab] % periods
|
||
|
idxer = label_indexer[lab, idxer_slot]
|
||
|
|
||
|
if label_seen[lab] > periods:
|
||
|
out[ii] = idxer
|
||
|
else:
|
||
|
out[ii] = -1
|
||
|
|
||
|
label_indexer[lab, idxer_slot] = ii
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_fillna_indexer(
|
||
|
ndarray[intp_t] out,
|
||
|
ndarray[intp_t] labels,
|
||
|
ndarray[intp_t] sorted_labels,
|
||
|
ndarray[uint8_t] mask,
|
||
|
str direction,
|
||
|
int64_t limit,
|
||
|
bint dropna,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Indexes how to fill values forwards or backwards within a group.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[np.intp]
|
||
|
Values into which this method will write its results.
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Array containing unique label for each group, with its ordering
|
||
|
matching up to the corresponding record in `values`.
|
||
|
sorted_labels : np.ndarray[np.intp]
|
||
|
obtained by `np.argsort(labels, kind="mergesort")`; reversed if
|
||
|
direction == "bfill"
|
||
|
values : np.ndarray[np.uint8]
|
||
|
Containing the truth value of each element.
|
||
|
mask : np.ndarray[np.uint8]
|
||
|
Indicating whether a value is na or not.
|
||
|
direction : {'ffill', 'bfill'}
|
||
|
Direction for fill to be applied (forwards or backwards, respectively)
|
||
|
limit : Consecutive values to fill before stopping, or -1 for no limit
|
||
|
dropna : Flag to indicate if NaN groups should return all NaN values
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter rather than returning an object
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, N, idx
|
||
|
intp_t curr_fill_idx=-1
|
||
|
int64_t filled_vals = 0
|
||
|
|
||
|
N = len(out)
|
||
|
|
||
|
# Make sure all arrays are the same size
|
||
|
assert N == len(labels) == len(mask)
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
idx = sorted_labels[i]
|
||
|
if dropna and labels[idx] == -1: # nan-group gets nan-values
|
||
|
curr_fill_idx = -1
|
||
|
elif mask[idx] == 1: # is missing
|
||
|
# Stop filling once we've hit the limit
|
||
|
if filled_vals >= limit and limit != -1:
|
||
|
curr_fill_idx = -1
|
||
|
filled_vals += 1
|
||
|
else: # reset items when not missing
|
||
|
filled_vals = 0
|
||
|
curr_fill_idx = idx
|
||
|
|
||
|
out[idx] = curr_fill_idx
|
||
|
|
||
|
# If we move to the next group, reset
|
||
|
# the fill_idx and counter
|
||
|
if i == N - 1 or labels[idx] != labels[sorted_labels[i + 1]]:
|
||
|
curr_fill_idx = -1
|
||
|
filled_vals = 0
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_any_all(
|
||
|
int8_t[:, ::1] out,
|
||
|
const int8_t[:, :] values,
|
||
|
const intp_t[::1] labels,
|
||
|
const uint8_t[:, :] mask,
|
||
|
str val_test,
|
||
|
bint skipna,
|
||
|
bint nullable,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Aggregated boolean values to show truthfulness of group elements. If the
|
||
|
input is a nullable type (nullable=True), the result will be computed
|
||
|
using Kleene logic.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[np.int8]
|
||
|
Values into which this method will write its results.
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Array containing unique label for each group, with its
|
||
|
ordering matching up to the corresponding record in `values`
|
||
|
values : np.ndarray[np.int8]
|
||
|
Containing the truth value of each element.
|
||
|
mask : np.ndarray[np.uint8]
|
||
|
Indicating whether a value is na or not.
|
||
|
val_test : {'any', 'all'}
|
||
|
String object dictating whether to use any or all truth testing
|
||
|
skipna : bool
|
||
|
Flag to ignore nan values during truth testing
|
||
|
nullable : bool
|
||
|
Whether or not the input is a nullable type. If True, the
|
||
|
result will be computed using Kleene logic
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter rather than returning an object.
|
||
|
The returned values will either be 0, 1 (False or True, respectively), or
|
||
|
-1 to signify a masked position in the case of a nullable input.
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N = len(labels), K = out.shape[1]
|
||
|
intp_t lab
|
||
|
int8_t flag_val, val
|
||
|
|
||
|
if val_test == "all":
|
||
|
# Because the 'all' value of an empty iterable in Python is True we can
|
||
|
# start with an array full of ones and set to zero when a False value
|
||
|
# is encountered
|
||
|
flag_val = 0
|
||
|
elif val_test == "any":
|
||
|
# Because the 'any' value of an empty iterable in Python is False we
|
||
|
# can start with an array full of zeros and set to one only if any
|
||
|
# value encountered is True
|
||
|
flag_val = 1
|
||
|
else:
|
||
|
raise ValueError("'bool_func' must be either 'any' or 'all'!")
|
||
|
|
||
|
out[:] = 1 - flag_val
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
for j in range(K):
|
||
|
if skipna and mask[i, j]:
|
||
|
continue
|
||
|
|
||
|
if nullable and mask[i, j]:
|
||
|
# Set the position as masked if `out[lab] != flag_val`, which
|
||
|
# would indicate True/False has not yet been seen for any/all,
|
||
|
# so by Kleene logic the result is currently unknown
|
||
|
if out[lab, j] != flag_val:
|
||
|
out[lab, j] = -1
|
||
|
continue
|
||
|
|
||
|
val = values[i, j]
|
||
|
|
||
|
# If True and 'any' or False and 'all', the result is
|
||
|
# already determined
|
||
|
if val == flag_val:
|
||
|
out[lab, j] = flag_val
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# group_sum, group_prod, group_var, group_mean, group_ohlc
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
ctypedef fused mean_t:
|
||
|
float64_t
|
||
|
float32_t
|
||
|
complex64_t
|
||
|
complex128_t
|
||
|
|
||
|
ctypedef fused sum_t:
|
||
|
mean_t
|
||
|
int64_t
|
||
|
uint64_t
|
||
|
object
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_sum(
|
||
|
sum_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[sum_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
const uint8_t[:, :] mask,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
Py_ssize_t min_count=0,
|
||
|
bint is_datetimelike=False,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Only aggregates on axis=0 using Kahan summation
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
|
||
|
sum_t val, t, y
|
||
|
sum_t[:, ::1] sumx, compensation
|
||
|
int64_t[:, ::1] nobs
|
||
|
Py_ssize_t len_values = len(values), len_labels = len(labels)
|
||
|
bint uses_mask = mask is not None
|
||
|
bint isna_entry
|
||
|
|
||
|
if len_values != len_labels:
|
||
|
raise ValueError("len(index) != len(labels)")
|
||
|
|
||
|
nobs = np.zeros((<object>out).shape, dtype=np.int64)
|
||
|
# the below is equivalent to `np.zeros_like(out)` but faster
|
||
|
sumx = np.zeros((<object>out).shape, dtype=(<object>out).base.dtype)
|
||
|
compensation = np.zeros((<object>out).shape, dtype=(<object>out).base.dtype)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
if sum_t is object:
|
||
|
# NB: this does not use 'compensation' like the non-object track does.
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
# not nan
|
||
|
if not checknull(val):
|
||
|
nobs[lab, j] += 1
|
||
|
|
||
|
if nobs[lab, j] == 1:
|
||
|
# i.e. we haven't added anything yet; avoid TypeError
|
||
|
# if e.g. val is a str and sumx[lab, j] is 0
|
||
|
t = val
|
||
|
else:
|
||
|
t = sumx[lab, j] + val
|
||
|
sumx[lab, j] = t
|
||
|
|
||
|
for i in range(ncounts):
|
||
|
for j in range(K):
|
||
|
if nobs[i, j] < min_count:
|
||
|
out[i, j] = None
|
||
|
|
||
|
else:
|
||
|
out[i, j] = sumx[i, j]
|
||
|
else:
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not isna_entry:
|
||
|
nobs[lab, j] += 1
|
||
|
y = val - compensation[lab, j]
|
||
|
t = sumx[lab, j] + y
|
||
|
compensation[lab, j] = t - sumx[lab, j] - y
|
||
|
sumx[lab, j] = t
|
||
|
|
||
|
_check_below_mincount(
|
||
|
out, uses_mask, result_mask, ncounts, K, nobs, min_count, sumx
|
||
|
)
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_prod(
|
||
|
int64float_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[int64float_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
const uint8_t[:, ::1] mask,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
Py_ssize_t min_count=0,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Only aggregates on axis=0
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
|
||
|
int64float_t val
|
||
|
int64float_t[:, ::1] prodx
|
||
|
int64_t[:, ::1] nobs
|
||
|
Py_ssize_t len_values = len(values), len_labels = len(labels)
|
||
|
bint isna_entry, uses_mask = mask is not None
|
||
|
|
||
|
if len_values != len_labels:
|
||
|
raise ValueError("len(index) != len(labels)")
|
||
|
|
||
|
nobs = np.zeros((<object>out).shape, dtype=np.int64)
|
||
|
prodx = np.ones((<object>out).shape, dtype=(<object>out).base.dtype)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, False)
|
||
|
|
||
|
if not isna_entry:
|
||
|
nobs[lab, j] += 1
|
||
|
prodx[lab, j] *= val
|
||
|
|
||
|
_check_below_mincount(
|
||
|
out, uses_mask, result_mask, ncounts, K, nobs, min_count, prodx
|
||
|
)
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.cdivision(True)
|
||
|
def group_var(
|
||
|
floating[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[floating, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
int64_t ddof=1,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
bint is_datetimelike=False,
|
||
|
) -> None:
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
|
||
|
floating val, ct, oldmean
|
||
|
floating[:, ::1] mean
|
||
|
int64_t[:, ::1] nobs
|
||
|
Py_ssize_t len_values = len(values), len_labels = len(labels)
|
||
|
bint isna_entry, uses_mask = mask is not None
|
||
|
|
||
|
assert min_count == -1, "'min_count' only used in sum and prod"
|
||
|
|
||
|
if len_values != len_labels:
|
||
|
raise ValueError("len(index) != len(labels)")
|
||
|
|
||
|
nobs = np.zeros((<object>out).shape, dtype=np.int64)
|
||
|
mean = np.zeros((<object>out).shape, dtype=(<object>out).base.dtype)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
out[:, :] = 0.0
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
elif is_datetimelike:
|
||
|
# With group_var, we cannot just use _treat_as_na bc
|
||
|
# datetimelike dtypes get cast to float64 instead of
|
||
|
# to int64.
|
||
|
isna_entry = val == NPY_NAT
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not isna_entry:
|
||
|
nobs[lab, j] += 1
|
||
|
oldmean = mean[lab, j]
|
||
|
mean[lab, j] += (val - oldmean) / nobs[lab, j]
|
||
|
out[lab, j] += (val - mean[lab, j]) * (val - oldmean)
|
||
|
|
||
|
for i in range(ncounts):
|
||
|
for j in range(K):
|
||
|
ct = nobs[i, j]
|
||
|
if ct <= ddof:
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = True
|
||
|
else:
|
||
|
out[i, j] = NAN
|
||
|
else:
|
||
|
out[i, j] /= (ct - ddof)
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_mean(
|
||
|
mean_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[mean_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
bint is_datetimelike=False,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Compute the mean per label given a label assignment for each value.
|
||
|
NaN values are ignored.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[floating]
|
||
|
Values into which this method will write its results.
|
||
|
counts : np.ndarray[int64]
|
||
|
A zeroed array of the same shape as labels,
|
||
|
populated by group sizes during algorithm.
|
||
|
values : np.ndarray[floating]
|
||
|
2-d array of the values to find the mean of.
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Array containing unique label for each group, with its
|
||
|
ordering matching up to the corresponding record in `values`.
|
||
|
min_count : Py_ssize_t
|
||
|
Only used in sum and prod. Always -1.
|
||
|
is_datetimelike : bool
|
||
|
True if `values` contains datetime-like entries.
|
||
|
mask : ndarray[bool, ndim=2], optional
|
||
|
Mask of the input values.
|
||
|
result_mask : ndarray[bool, ndim=2], optional
|
||
|
Mask of the out array
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter rather than returning an object.
|
||
|
`counts` is modified to hold group sizes
|
||
|
"""
|
||
|
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
|
||
|
mean_t val, count, y, t, nan_val
|
||
|
mean_t[:, ::1] sumx, compensation
|
||
|
int64_t[:, ::1] nobs
|
||
|
Py_ssize_t len_values = len(values), len_labels = len(labels)
|
||
|
bint isna_entry, uses_mask = mask is not None
|
||
|
|
||
|
assert min_count == -1, "'min_count' only used in sum and prod"
|
||
|
|
||
|
if len_values != len_labels:
|
||
|
raise ValueError("len(index) != len(labels)")
|
||
|
|
||
|
# the below is equivalent to `np.zeros_like(out)` but faster
|
||
|
nobs = np.zeros((<object>out).shape, dtype=np.int64)
|
||
|
sumx = np.zeros((<object>out).shape, dtype=(<object>out).base.dtype)
|
||
|
compensation = np.zeros((<object>out).shape, dtype=(<object>out).base.dtype)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
if uses_mask:
|
||
|
nan_val = 0
|
||
|
elif is_datetimelike:
|
||
|
nan_val = NPY_NAT
|
||
|
else:
|
||
|
nan_val = NAN
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
elif is_datetimelike:
|
||
|
# With group_mean, we cannot just use _treat_as_na bc
|
||
|
# datetimelike dtypes get cast to float64 instead of
|
||
|
# to int64.
|
||
|
isna_entry = val == NPY_NAT
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not isna_entry:
|
||
|
nobs[lab, j] += 1
|
||
|
y = val - compensation[lab, j]
|
||
|
t = sumx[lab, j] + y
|
||
|
compensation[lab, j] = t - sumx[lab, j] - y
|
||
|
sumx[lab, j] = t
|
||
|
|
||
|
for i in range(ncounts):
|
||
|
for j in range(K):
|
||
|
count = nobs[i, j]
|
||
|
if nobs[i, j] == 0:
|
||
|
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = True
|
||
|
else:
|
||
|
out[i, j] = nan_val
|
||
|
|
||
|
else:
|
||
|
out[i, j] = sumx[i, j] / count
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_ohlc(
|
||
|
int64float_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[int64float_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Only aggregates on axis=0
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, N, K, lab
|
||
|
int64float_t val
|
||
|
uint8_t[::1] first_element_set
|
||
|
bint isna_entry, uses_mask = mask is not None
|
||
|
|
||
|
assert min_count == -1, "'min_count' only used in sum and prod"
|
||
|
|
||
|
if len(labels) == 0:
|
||
|
return
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
if out.shape[1] != 4:
|
||
|
raise ValueError("Output array must have 4 columns")
|
||
|
|
||
|
if K > 1:
|
||
|
raise NotImplementedError("Argument 'values' must have only one dimension")
|
||
|
|
||
|
if int64float_t is float32_t or int64float_t is float64_t:
|
||
|
out[:] = np.nan
|
||
|
else:
|
||
|
out[:] = 0
|
||
|
|
||
|
first_element_set = np.zeros((<object>counts).shape, dtype=np.uint8)
|
||
|
if uses_mask:
|
||
|
result_mask[:] = True
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab == -1:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
val = values[i, 0]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, 0]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, False)
|
||
|
|
||
|
if isna_entry:
|
||
|
continue
|
||
|
|
||
|
if not first_element_set[lab]:
|
||
|
out[lab, 0] = out[lab, 1] = out[lab, 2] = out[lab, 3] = val
|
||
|
first_element_set[lab] = True
|
||
|
if uses_mask:
|
||
|
result_mask[lab] = False
|
||
|
else:
|
||
|
out[lab, 1] = max(out[lab, 1], val)
|
||
|
out[lab, 2] = min(out[lab, 2], val)
|
||
|
out[lab, 3] = val
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_quantile(
|
||
|
ndarray[float64_t, ndim=2] out,
|
||
|
ndarray[numeric_t, ndim=1] values,
|
||
|
ndarray[intp_t] labels,
|
||
|
ndarray[uint8_t] mask,
|
||
|
const intp_t[:] sort_indexer,
|
||
|
const float64_t[:] qs,
|
||
|
str interpolation,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Calculate the quantile per group.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[np.float64, ndim=2]
|
||
|
Array of aggregated values that will be written to.
|
||
|
values : np.ndarray
|
||
|
Array containing the values to apply the function against.
|
||
|
labels : ndarray[np.intp]
|
||
|
Array containing the unique group labels.
|
||
|
sort_indexer : ndarray[np.intp]
|
||
|
Indices describing sort order by values and labels.
|
||
|
qs : ndarray[float64_t]
|
||
|
The quantile values to search for.
|
||
|
interpolation : {'linear', 'lower', 'highest', 'nearest', 'midpoint'}
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Rather than explicitly returning a value, this function modifies the
|
||
|
provided `out` parameter.
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, N=len(labels), ngroups, grp_sz, non_na_sz, k, nqs
|
||
|
Py_ssize_t grp_start=0, idx=0
|
||
|
intp_t lab
|
||
|
InterpolationEnumType interp
|
||
|
float64_t q_val, q_idx, frac, val, next_val
|
||
|
int64_t[::1] counts, non_na_counts
|
||
|
bint uses_result_mask = result_mask is not None
|
||
|
|
||
|
assert values.shape[0] == N
|
||
|
|
||
|
if any(not (0 <= q <= 1) for q in qs):
|
||
|
wrong = [x for x in qs if not (0 <= x <= 1)][0]
|
||
|
raise ValueError(
|
||
|
f"Each 'q' must be between 0 and 1. Got '{wrong}' instead"
|
||
|
)
|
||
|
|
||
|
inter_methods = {
|
||
|
"linear": INTERPOLATION_LINEAR,
|
||
|
"lower": INTERPOLATION_LOWER,
|
||
|
"higher": INTERPOLATION_HIGHER,
|
||
|
"nearest": INTERPOLATION_NEAREST,
|
||
|
"midpoint": INTERPOLATION_MIDPOINT,
|
||
|
}
|
||
|
interp = inter_methods[interpolation]
|
||
|
|
||
|
nqs = len(qs)
|
||
|
ngroups = len(out)
|
||
|
counts = np.zeros(ngroups, dtype=np.int64)
|
||
|
non_na_counts = np.zeros(ngroups, dtype=np.int64)
|
||
|
|
||
|
# First figure out the size of every group
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab == -1: # NA group label
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
if not mask[i]:
|
||
|
non_na_counts[lab] += 1
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(ngroups):
|
||
|
# Figure out how many group elements there are
|
||
|
grp_sz = counts[i]
|
||
|
non_na_sz = non_na_counts[i]
|
||
|
|
||
|
if non_na_sz == 0:
|
||
|
for k in range(nqs):
|
||
|
if uses_result_mask:
|
||
|
result_mask[i, k] = 1
|
||
|
else:
|
||
|
out[i, k] = NaN
|
||
|
else:
|
||
|
for k in range(nqs):
|
||
|
q_val = qs[k]
|
||
|
|
||
|
# Calculate where to retrieve the desired value
|
||
|
# Casting to int will intentionally truncate result
|
||
|
idx = grp_start + <int64_t>(q_val * <float64_t>(non_na_sz - 1))
|
||
|
|
||
|
val = values[sort_indexer[idx]]
|
||
|
# If requested quantile falls evenly on a particular index
|
||
|
# then write that index's value out. Otherwise interpolate
|
||
|
q_idx = q_val * (non_na_sz - 1)
|
||
|
frac = q_idx % 1
|
||
|
|
||
|
if frac == 0.0 or interp == INTERPOLATION_LOWER:
|
||
|
out[i, k] = val
|
||
|
else:
|
||
|
next_val = values[sort_indexer[idx + 1]]
|
||
|
if interp == INTERPOLATION_LINEAR:
|
||
|
out[i, k] = val + (next_val - val) * frac
|
||
|
elif interp == INTERPOLATION_HIGHER:
|
||
|
out[i, k] = next_val
|
||
|
elif interp == INTERPOLATION_MIDPOINT:
|
||
|
out[i, k] = (val + next_val) / 2.0
|
||
|
elif interp == INTERPOLATION_NEAREST:
|
||
|
if frac > .5 or (frac == .5 and q_val > .5): # Always OK?
|
||
|
out[i, k] = next_val
|
||
|
else:
|
||
|
out[i, k] = val
|
||
|
|
||
|
# Increment the index reference in sorted_arr for the next group
|
||
|
grp_start += grp_sz
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# group_nth, group_last, group_rank
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
ctypedef fused numeric_object_complex_t:
|
||
|
numeric_object_t
|
||
|
complex64_t
|
||
|
complex128_t
|
||
|
|
||
|
|
||
|
cdef bint _treat_as_na(numeric_object_complex_t val, bint is_datetimelike) nogil:
|
||
|
if numeric_object_complex_t is object:
|
||
|
# Should never be used, but we need to avoid the `val != val` below
|
||
|
# or else cython will raise about gil acquisition.
|
||
|
raise NotImplementedError
|
||
|
|
||
|
elif numeric_object_complex_t is int64_t:
|
||
|
return is_datetimelike and val == NPY_NAT
|
||
|
elif (
|
||
|
numeric_object_complex_t is float32_t
|
||
|
or numeric_object_complex_t is float64_t
|
||
|
or numeric_object_complex_t is complex64_t
|
||
|
or numeric_object_complex_t is complex128_t
|
||
|
):
|
||
|
return val != val
|
||
|
else:
|
||
|
# non-datetimelike integer
|
||
|
return False
|
||
|
|
||
|
|
||
|
cdef numeric_object_t _get_min_or_max(
|
||
|
numeric_object_t val,
|
||
|
bint compute_max,
|
||
|
bint is_datetimelike,
|
||
|
):
|
||
|
"""
|
||
|
Find either the min or the max supported by numeric_object_t; 'val' is a
|
||
|
placeholder to effectively make numeric_object_t an argument.
|
||
|
"""
|
||
|
return get_rank_nan_fill_val(
|
||
|
not compute_max,
|
||
|
val=val,
|
||
|
is_datetimelike=is_datetimelike,
|
||
|
)
|
||
|
|
||
|
|
||
|
cdef numeric_t _get_na_val(numeric_t val, bint is_datetimelike):
|
||
|
cdef:
|
||
|
numeric_t na_val
|
||
|
|
||
|
if numeric_t == float32_t or numeric_t == float64_t:
|
||
|
na_val = NaN
|
||
|
elif numeric_t is int64_t and is_datetimelike:
|
||
|
na_val = NPY_NAT
|
||
|
else:
|
||
|
# Used in case of masks
|
||
|
na_val = 0
|
||
|
return na_val
|
||
|
|
||
|
|
||
|
ctypedef fused mincount_t:
|
||
|
numeric_t
|
||
|
complex64_t
|
||
|
complex128_t
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
cdef inline void _check_below_mincount(
|
||
|
mincount_t[:, ::1] out,
|
||
|
bint uses_mask,
|
||
|
uint8_t[:, ::1] result_mask,
|
||
|
Py_ssize_t ncounts,
|
||
|
Py_ssize_t K,
|
||
|
int64_t[:, ::1] nobs,
|
||
|
int64_t min_count,
|
||
|
mincount_t[:, ::1] resx,
|
||
|
) nogil:
|
||
|
"""
|
||
|
Check if the number of observations for a group is below min_count,
|
||
|
and if so set the result for that group to the appropriate NA-like value.
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j
|
||
|
|
||
|
for i in range(ncounts):
|
||
|
for j in range(K):
|
||
|
|
||
|
if nobs[i, j] < min_count:
|
||
|
# if we are integer dtype, not is_datetimelike, and
|
||
|
# not uses_mask, then getting here implies that
|
||
|
# counts[i] < min_count, which means we will
|
||
|
# be cast to float64 and masked at the end
|
||
|
# of WrappedCythonOp._call_cython_op. So we can safely
|
||
|
# set a placeholder value in out[i, j].
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = True
|
||
|
# set out[i, j] to 0 to be deterministic, as
|
||
|
# it was initialized with np.empty. Also ensures
|
||
|
# we can downcast out if appropriate.
|
||
|
out[i, j] = 0
|
||
|
elif (
|
||
|
mincount_t is float32_t
|
||
|
or mincount_t is float64_t
|
||
|
or mincount_t is complex64_t
|
||
|
or mincount_t is complex128_t
|
||
|
):
|
||
|
out[i, j] = NAN
|
||
|
elif mincount_t is int64_t:
|
||
|
# Per above, this is a placeholder in
|
||
|
# non-is_datetimelike cases.
|
||
|
out[i, j] = NPY_NAT
|
||
|
else:
|
||
|
# placeholder, see above
|
||
|
out[i, j] = 0
|
||
|
else:
|
||
|
out[i, j] = resx[i, j]
|
||
|
|
||
|
|
||
|
# TODO(cython3): GH#31710 use memorviews once cython 0.30 is released so we can
|
||
|
# use `const numeric_object_t[:, :] values`
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_last(
|
||
|
numeric_object_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[numeric_object_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
const uint8_t[:, :] mask,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
bint is_datetimelike=False,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Only aggregates on axis=0
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
|
||
|
numeric_object_t val
|
||
|
numeric_object_t[:, ::1] resx
|
||
|
int64_t[:, ::1] nobs
|
||
|
bint uses_mask = mask is not None
|
||
|
bint isna_entry
|
||
|
|
||
|
# TODO(cython3):
|
||
|
# Instead of `labels.shape[0]` use `len(labels)`
|
||
|
if not len(values) == labels.shape[0]:
|
||
|
raise AssertionError("len(index) != len(labels)")
|
||
|
|
||
|
min_count = max(min_count, 1)
|
||
|
nobs = np.zeros((<object>out).shape, dtype=np.int64)
|
||
|
if numeric_object_t is object:
|
||
|
resx = np.empty((<object>out).shape, dtype=object)
|
||
|
else:
|
||
|
resx = np.empty_like(out)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
if numeric_object_t is object:
|
||
|
# TODO(cython3): De-duplicate once conditional-nogil is available
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = checknull(val)
|
||
|
|
||
|
if not isna_entry:
|
||
|
# TODO(cython3): use _treat_as_na here once
|
||
|
# conditional-nogil is available.
|
||
|
nobs[lab, j] += 1
|
||
|
resx[lab, j] = val
|
||
|
|
||
|
for i in range(ncounts):
|
||
|
for j in range(K):
|
||
|
if nobs[i, j] < min_count:
|
||
|
out[i, j] = None
|
||
|
else:
|
||
|
out[i, j] = resx[i, j]
|
||
|
else:
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not isna_entry:
|
||
|
nobs[lab, j] += 1
|
||
|
resx[lab, j] = val
|
||
|
|
||
|
_check_below_mincount(
|
||
|
out, uses_mask, result_mask, ncounts, K, nobs, min_count, resx
|
||
|
)
|
||
|
|
||
|
|
||
|
# TODO(cython3): GH#31710 use memorviews once cython 0.30 is released so we can
|
||
|
# use `const numeric_object_t[:, :] values`
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_nth(
|
||
|
numeric_object_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[numeric_object_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
const uint8_t[:, :] mask,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
int64_t min_count=-1,
|
||
|
int64_t rank=1,
|
||
|
bint is_datetimelike=False,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Only aggregates on axis=0
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
|
||
|
numeric_object_t val
|
||
|
numeric_object_t[:, ::1] resx
|
||
|
int64_t[:, ::1] nobs
|
||
|
bint uses_mask = mask is not None
|
||
|
bint isna_entry
|
||
|
|
||
|
# TODO(cython3):
|
||
|
# Instead of `labels.shape[0]` use `len(labels)`
|
||
|
if not len(values) == labels.shape[0]:
|
||
|
raise AssertionError("len(index) != len(labels)")
|
||
|
|
||
|
min_count = max(min_count, 1)
|
||
|
nobs = np.zeros((<object>out).shape, dtype=np.int64)
|
||
|
if numeric_object_t is object:
|
||
|
resx = np.empty((<object>out).shape, dtype=object)
|
||
|
else:
|
||
|
resx = np.empty_like(out)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
if numeric_object_t is object:
|
||
|
# TODO(cython3): De-duplicate once conditional-nogil is available
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = checknull(val)
|
||
|
|
||
|
if not isna_entry:
|
||
|
# TODO(cython3): use _treat_as_na here once
|
||
|
# conditional-nogil is available.
|
||
|
nobs[lab, j] += 1
|
||
|
if nobs[lab, j] == rank:
|
||
|
resx[lab, j] = val
|
||
|
|
||
|
for i in range(ncounts):
|
||
|
for j in range(K):
|
||
|
if nobs[i, j] < min_count:
|
||
|
out[i, j] = None
|
||
|
else:
|
||
|
out[i, j] = resx[i, j]
|
||
|
|
||
|
else:
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not isna_entry:
|
||
|
nobs[lab, j] += 1
|
||
|
if nobs[lab, j] == rank:
|
||
|
resx[lab, j] = val
|
||
|
|
||
|
_check_below_mincount(
|
||
|
out, uses_mask, result_mask, ncounts, K, nobs, min_count, resx
|
||
|
)
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_rank(
|
||
|
float64_t[:, ::1] out,
|
||
|
ndarray[numeric_object_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
int ngroups,
|
||
|
bint is_datetimelike,
|
||
|
str ties_method="average",
|
||
|
bint ascending=True,
|
||
|
bint pct=False,
|
||
|
str na_option="keep",
|
||
|
const uint8_t[:, :] mask=None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Provides the rank of values within each group.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[np.float64, ndim=2]
|
||
|
Values to which this method will write its results.
|
||
|
values : np.ndarray of numeric_object_t values to be ranked
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Array containing unique label for each group, with its ordering
|
||
|
matching up to the corresponding record in `values`
|
||
|
ngroups : int
|
||
|
This parameter is not used, is needed to match signatures of other
|
||
|
groupby functions.
|
||
|
is_datetimelike : bool
|
||
|
True if `values` contains datetime-like entries.
|
||
|
ties_method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
|
||
|
* average: average rank of group
|
||
|
* min: lowest rank in group
|
||
|
* max: highest rank in group
|
||
|
* first: ranks assigned in order they appear in the array
|
||
|
* dense: like 'min', but rank always increases by 1 between groups
|
||
|
ascending : bool, default True
|
||
|
False for ranks by high (1) to low (N)
|
||
|
na_option : {'keep', 'top', 'bottom'}, default 'keep'
|
||
|
pct : bool, default False
|
||
|
Compute percentage rank of data within each group
|
||
|
na_option : {'keep', 'top', 'bottom'}, default 'keep'
|
||
|
* keep: leave NA values where they are
|
||
|
* top: smallest rank if ascending
|
||
|
* bottom: smallest rank if descending
|
||
|
mask : np.ndarray[bool] or None, default None
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter rather than returning an object
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, k, N
|
||
|
ndarray[float64_t, ndim=1] result
|
||
|
const uint8_t[:] sub_mask
|
||
|
|
||
|
N = values.shape[1]
|
||
|
|
||
|
for k in range(N):
|
||
|
if mask is None:
|
||
|
sub_mask = None
|
||
|
else:
|
||
|
sub_mask = mask[:, k]
|
||
|
|
||
|
result = rank_1d(
|
||
|
values=values[:, k],
|
||
|
labels=labels,
|
||
|
is_datetimelike=is_datetimelike,
|
||
|
ties_method=ties_method,
|
||
|
ascending=ascending,
|
||
|
pct=pct,
|
||
|
na_option=na_option,
|
||
|
mask=sub_mask,
|
||
|
)
|
||
|
for i in range(len(result)):
|
||
|
if labels[i] >= 0:
|
||
|
out[i, k] = result[i]
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# group_min, group_max
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
cdef group_min_max(
|
||
|
numeric_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[numeric_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
bint is_datetimelike=False,
|
||
|
bint compute_max=True,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
):
|
||
|
"""
|
||
|
Compute minimum/maximum of columns of `values`, in row groups `labels`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[numeric_t, ndim=2]
|
||
|
Array to store result in.
|
||
|
counts : np.ndarray[int64]
|
||
|
Input as a zeroed array, populated by group sizes during algorithm
|
||
|
values : array
|
||
|
Values to find column-wise min/max of.
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Labels to group by.
|
||
|
min_count : Py_ssize_t, default -1
|
||
|
The minimum number of non-NA group elements, NA result if threshold
|
||
|
is not met
|
||
|
is_datetimelike : bool
|
||
|
True if `values` contains datetime-like entries.
|
||
|
compute_max : bint, default True
|
||
|
True to compute group-wise max, False to compute min
|
||
|
mask : ndarray[bool, ndim=2], optional
|
||
|
If not None, indices represent missing values,
|
||
|
otherwise the mask will not be used
|
||
|
result_mask : ndarray[bool, ndim=2], optional
|
||
|
If not None, these specify locations in the output that are NA.
|
||
|
Modified in-place.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter, rather than returning an object.
|
||
|
`counts` is modified to hold group sizes
|
||
|
"""
|
||
|
cdef:
|
||
|
Py_ssize_t i, j, N, K, lab, ngroups = len(counts)
|
||
|
numeric_t val
|
||
|
numeric_t[:, ::1] group_min_or_max
|
||
|
int64_t[:, ::1] nobs
|
||
|
bint uses_mask = mask is not None
|
||
|
bint isna_entry
|
||
|
|
||
|
# TODO(cython3):
|
||
|
# Instead of `labels.shape[0]` use `len(labels)`
|
||
|
if not len(values) == labels.shape[0]:
|
||
|
raise AssertionError("len(index) != len(labels)")
|
||
|
|
||
|
min_count = max(min_count, 1)
|
||
|
nobs = np.zeros((<object>out).shape, dtype=np.int64)
|
||
|
|
||
|
group_min_or_max = np.empty_like(out)
|
||
|
group_min_or_max[:] = _get_min_or_max(<numeric_t>0, compute_max, is_datetimelike)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
|
||
|
counts[lab] += 1
|
||
|
for j in range(K):
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not isna_entry:
|
||
|
nobs[lab, j] += 1
|
||
|
if compute_max:
|
||
|
if val > group_min_or_max[lab, j]:
|
||
|
group_min_or_max[lab, j] = val
|
||
|
else:
|
||
|
if val < group_min_or_max[lab, j]:
|
||
|
group_min_or_max[lab, j] = val
|
||
|
|
||
|
_check_below_mincount(
|
||
|
out, uses_mask, result_mask, ngroups, K, nobs, min_count, group_min_or_max
|
||
|
)
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_max(
|
||
|
numeric_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[numeric_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
bint is_datetimelike=False,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""See group_min_max.__doc__"""
|
||
|
group_min_max(
|
||
|
out,
|
||
|
counts,
|
||
|
values,
|
||
|
labels,
|
||
|
min_count=min_count,
|
||
|
is_datetimelike=is_datetimelike,
|
||
|
compute_max=True,
|
||
|
mask=mask,
|
||
|
result_mask=result_mask,
|
||
|
)
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def group_min(
|
||
|
numeric_t[:, ::1] out,
|
||
|
int64_t[::1] counts,
|
||
|
ndarray[numeric_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
Py_ssize_t min_count=-1,
|
||
|
bint is_datetimelike=False,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
) -> None:
|
||
|
"""See group_min_max.__doc__"""
|
||
|
group_min_max(
|
||
|
out,
|
||
|
counts,
|
||
|
values,
|
||
|
labels,
|
||
|
min_count=min_count,
|
||
|
is_datetimelike=is_datetimelike,
|
||
|
compute_max=False,
|
||
|
mask=mask,
|
||
|
result_mask=result_mask,
|
||
|
)
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
cdef group_cummin_max(
|
||
|
numeric_t[:, ::1] out,
|
||
|
ndarray[numeric_t, ndim=2] values,
|
||
|
const uint8_t[:, ::1] mask,
|
||
|
uint8_t[:, ::1] result_mask,
|
||
|
const intp_t[::1] labels,
|
||
|
int ngroups,
|
||
|
bint is_datetimelike,
|
||
|
bint skipna,
|
||
|
bint compute_max,
|
||
|
):
|
||
|
"""
|
||
|
Cumulative minimum/maximum of columns of `values`, in row groups `labels`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
out : np.ndarray[numeric_t, ndim=2]
|
||
|
Array to store cummin/max in.
|
||
|
values : np.ndarray[numeric_t, ndim=2]
|
||
|
Values to take cummin/max of.
|
||
|
mask : np.ndarray[bool] or None
|
||
|
If not None, indices represent missing values,
|
||
|
otherwise the mask will not be used
|
||
|
result_mask : ndarray[bool, ndim=2], optional
|
||
|
If not None, these specify locations in the output that are NA.
|
||
|
Modified in-place.
|
||
|
labels : np.ndarray[np.intp]
|
||
|
Labels to group by.
|
||
|
ngroups : int
|
||
|
Number of groups, larger than all entries of `labels`.
|
||
|
is_datetimelike : bool
|
||
|
True if `values` contains datetime-like entries.
|
||
|
skipna : bool
|
||
|
If True, ignore nans in `values`.
|
||
|
compute_max : bool
|
||
|
True if cumulative maximum should be computed, False
|
||
|
if cumulative minimum should be computed
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method modifies the `out` parameter, rather than returning an object.
|
||
|
"""
|
||
|
cdef:
|
||
|
numeric_t[:, ::1] accum
|
||
|
Py_ssize_t i, j, N, K
|
||
|
numeric_t val, mval, na_val
|
||
|
uint8_t[:, ::1] seen_na
|
||
|
intp_t lab
|
||
|
bint na_possible
|
||
|
bint uses_mask = mask is not None
|
||
|
bint isna_entry
|
||
|
|
||
|
accum = np.empty((ngroups, (<object>values).shape[1]), dtype=values.dtype)
|
||
|
accum[:] = _get_min_or_max(<numeric_t>0, compute_max, is_datetimelike)
|
||
|
|
||
|
na_val = _get_na_val(<numeric_t>0, is_datetimelike)
|
||
|
|
||
|
if uses_mask:
|
||
|
na_possible = True
|
||
|
# Will never be used, just to avoid uninitialized warning
|
||
|
na_val = 0
|
||
|
elif numeric_t is float64_t or numeric_t is float32_t:
|
||
|
na_possible = True
|
||
|
elif is_datetimelike:
|
||
|
na_possible = True
|
||
|
else:
|
||
|
# Will never be used, just to avoid uninitialized warning
|
||
|
na_possible = False
|
||
|
|
||
|
if na_possible:
|
||
|
seen_na = np.zeros((<object>accum).shape, dtype=np.uint8)
|
||
|
|
||
|
N, K = (<object>values).shape
|
||
|
with nogil:
|
||
|
for i in range(N):
|
||
|
lab = labels[i]
|
||
|
if lab < 0:
|
||
|
continue
|
||
|
for j in range(K):
|
||
|
|
||
|
if not skipna and na_possible and seen_na[lab, j]:
|
||
|
if uses_mask:
|
||
|
result_mask[i, j] = 1
|
||
|
# Set to 0 ensures that we are deterministic and can
|
||
|
# downcast if appropriate
|
||
|
out[i, j] = 0
|
||
|
|
||
|
else:
|
||
|
out[i, j] = na_val
|
||
|
else:
|
||
|
val = values[i, j]
|
||
|
|
||
|
if uses_mask:
|
||
|
isna_entry = mask[i, j]
|
||
|
else:
|
||
|
isna_entry = _treat_as_na(val, is_datetimelike)
|
||
|
|
||
|
if not isna_entry:
|
||
|
mval = accum[lab, j]
|
||
|
if compute_max:
|
||
|
if val > mval:
|
||
|
accum[lab, j] = mval = val
|
||
|
else:
|
||
|
if val < mval:
|
||
|
accum[lab, j] = mval = val
|
||
|
out[i, j] = mval
|
||
|
else:
|
||
|
seen_na[lab, j] = 1
|
||
|
out[i, j] = val
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_cummin(
|
||
|
numeric_t[:, ::1] out,
|
||
|
ndarray[numeric_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
int ngroups,
|
||
|
bint is_datetimelike,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
bint skipna=True,
|
||
|
) -> None:
|
||
|
"""See group_cummin_max.__doc__"""
|
||
|
group_cummin_max(
|
||
|
out=out,
|
||
|
values=values,
|
||
|
mask=mask,
|
||
|
result_mask=result_mask,
|
||
|
labels=labels,
|
||
|
ngroups=ngroups,
|
||
|
is_datetimelike=is_datetimelike,
|
||
|
skipna=skipna,
|
||
|
compute_max=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def group_cummax(
|
||
|
numeric_t[:, ::1] out,
|
||
|
ndarray[numeric_t, ndim=2] values,
|
||
|
const intp_t[::1] labels,
|
||
|
int ngroups,
|
||
|
bint is_datetimelike,
|
||
|
const uint8_t[:, ::1] mask=None,
|
||
|
uint8_t[:, ::1] result_mask=None,
|
||
|
bint skipna=True,
|
||
|
) -> None:
|
||
|
"""See group_cummin_max.__doc__"""
|
||
|
group_cummin_max(
|
||
|
out=out,
|
||
|
values=values,
|
||
|
mask=mask,
|
||
|
result_mask=result_mask,
|
||
|
labels=labels,
|
||
|
ngroups=ngroups,
|
||
|
is_datetimelike=is_datetimelike,
|
||
|
skipna=skipna,
|
||
|
compute_max=True,
|
||
|
)
|